Skip to main content
Log in

Elicitor-Induced Cellular and Molecular Events Are Responsible for Productivity Enhancement in Hairy Root Cultures: An Insight Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A wide range of external stress stimuli triggers a plant cell to undergo a complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. These secondary metabolites help the plant to survive under stress challenge. The potential of biotic and abiotic elicitors for the induction and enhancement of secondary metabolite production in various culture systems including hairy root (HR) cultures is well-known. The elicitor-induced defense responses involves signal perception of elicitor by a cell surface receptor followed by its transduction involving some major cellular and molecular events including activation of major secondary message signaling pathways. This result in induction of gene expressions escorting to the synthesis of various proteins mainly associated with plant defense responses and secondary metabolite synthesis and accumulation. The review discusses the elicitor-induced various cellular and molecular events and correlates them with enhanced secondary metabolite synthesis in HR systems. Further, this review also concludes that combining elicitation with in-silico approaches enhances the usefulness of this practice in better understanding and identifying the rate-limiting steps of biosynthetic pathways existing in HRs which in turn can contribute towards better productivity by utilizing metabolic engineering aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HRs:

Hairy roots

SM:

Secondary metabolite

References

  1. Radman, R., Teresa, S., Christopher, B., & Tajalli, K. (2003). Biotechnology and Applied Biochemistry, 37, 91–102.

    Article  CAS  Google Scholar 

  2. Alexander, P., O’Neal, J., Logendra, S., Pouleva, R. B., Timeva, V., Garvey, A. S., et al. (2003). Journal of Medicinal Chemistry, 46, 2542–2547.

    Article  Google Scholar 

  3. Angelova, Z., Georgiev, S., & Ross, W. (2006). Biotechnology and Biotechnological Equipment, 20, 72–83.

    CAS  Google Scholar 

  4. Namdeo, A. G. (2007). Pharmacognosy Reviews, 1, 69–79.

    CAS  Google Scholar 

  5. Giri, A., & Narasu, M. L. (2000). Biotechnology Advances, 18, 1–22.

    Article  CAS  Google Scholar 

  6. Nishikawa, K., Furukawa, Furukawa, H., Toshihiro, H., Kunihide, M. F., Shimomura, K., et al. (1999). Phytochemistry, 52, 885–890.

    Article  CAS  Google Scholar 

  7. Boitel-Conti, M., Laberche, J. C., Lanoue, A., Ducrocq, C., & Sangwan-Norreel, B. S. (2000). Plant Cell Tissue Organ Culture, 60, 131–137.

    Article  CAS  Google Scholar 

  8. Eliel, R.-M., Rosa, G.-Á., & Víctor, L.-V. (2009). Molecular Biotechnology, 41, 278–285.

    Article  Google Scholar 

  9. Monteesano, M., Brader, G., & Palva, E. T. (2003). Molecular Plant Pathology, 4, 73–79.

    Article  Google Scholar 

  10. Vasconsuelo, A., & Boland, R. (2007). Plant Science, 172, 861–875.

    Article  CAS  Google Scholar 

  11. Dangl, J. L., & Jones, J. D. (2001). Nature, 411, 826–833.

    Article  CAS  Google Scholar 

  12. Okada, M., Matsumura, M., Ito, Y., & Shibuya, N. (2002). Plant & Cell Physiology, 43, 505–512.

    Article  CAS  Google Scholar 

  13. Bais, H. P., Ramarao, V., & Vivanco, J. M. (2003). Plant Physiology and Biochemistry, 41, 345–353.

    Article  CAS  Google Scholar 

  14. Bias, H. P., Park, S. W., Stermitz, F. R., Halligan, J. M., & Vivanco, J. M. (2002). Phytochemistry, 61, 539–543.

    Article  Google Scholar 

  15. Madsen, E. B., Madsen, L. H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., et al. (2003). Nature, 425, 637–640.

    Article  CAS  Google Scholar 

  16. Weerasinghe, R. R., David, B., Mc, K., & Allen, N. S. (2005). Proceedings of the National Academy of Sciences, 102, 3147–3152.

    Article  CAS  Google Scholar 

  17. Madsen, E. B., Antolin-Llovera, M., Grossmann, C., Ye, J., Vieweg, S., Broghammer, A., et al. (2011). The Plant Journal, 65, 404–417.

    Article  CAS  Google Scholar 

  18. Zhao, J., Lawrence, C., Davis, T., & Verpoorte, R. (2005). Biotechnology Advances, 23, 283–333.

    Article  CAS  Google Scholar 

  19. Lein, W., & Saalbach, G. (2001). Biochimica et Biophysica Acta, 1530, 172–183.

    Article  CAS  Google Scholar 

  20. Yang, T., & Poovaiah, B. W. (2002). Journal of Biological Chemistry, 277, 45049–45058.

    Article  CAS  Google Scholar 

  21. Suharsono, U., Fujisawa, Y., Kawasaki, T., Iwasaki, Y., Satoh, H., & Shimamoto, K. (2002). Proc. Natl. Acad. Sci., 99, 13307–13312.

    Article  CAS  Google Scholar 

  22. Kurosaki, F., Yamashita, A., & Arisawa, M. (2001). Plant Science, 161, 273–278.

    Article  CAS  Google Scholar 

  23. Apone, F., Alyeshmerni, N., Wiens, K., Chalmers, D., Chrispeels, M. J., & Colucci, G. (2003). Plant Physiology, 133, 571–579.

    Article  CAS  Google Scholar 

  24. Meijer, H. J. G., & Munnik, T. (2003). Annual Review of Plant Biology, 54, 265–306.

    Article  CAS  Google Scholar 

  25. Zhao, J., & Sakai, K. (2003). Journal of Experimental Botany, 54, 647–656.

    Article  CAS  Google Scholar 

  26. Sudha, G., & Ravishanker, G. A. (2002). Plant cell Tiss. Org. Cult., 71, 181–212.

    Article  CAS  Google Scholar 

  27. Wu, S. J., & Wu, J. Y. (2008). Journal of Experimental Botany, 59, 4007–4016.

    Article  CAS  Google Scholar 

  28. Wu, S. J., Liu, Y. S., & Wu, J. Y. (2008). Plant & Cell Physiology, 49, 617–624.

    Article  CAS  Google Scholar 

  29. Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., & Pugin, A. (2002). The Plant Cell, 14, 2627–2641.

    Article  CAS  Google Scholar 

  30. Ortega, X., & Perez, L. M. (2001). Biological Research, 34, 43–50.

    Article  CAS  Google Scholar 

  31. Hirayama, T., Ohto, C., Mizoguchi, T., & Shinozaki, K. (1995). Proc. Natl. Acad. Sci., 92, 3903–3907.

    Article  CAS  Google Scholar 

  32. Kopka, J., Pical, C., Gray, J., & Muller-Rober, B. (1998). Plant Physiology, 116, 239–250.

    Article  CAS  Google Scholar 

  33. Kim, Y. J., Kim, J. E., & Lee, J. H. (2004). FEBS Letters, 556, 127–136.

    Article  CAS  Google Scholar 

  34. Toyoda, K., Kawahara, T., Ichinose, Y., Yamada, T., & Shiraishi, T. (2000). Journal of Phytopathology, 148, 633–636.

    Article  CAS  Google Scholar 

  35. Vasconsuelo, A., Morelli, S., Picotto, G., Giuletti, A. M., & Boland, R. (2005). Plant Science, 169, 712–720.

    Article  CAS  Google Scholar 

  36. Cardinale, F., Jonak, C., Ligterink, W., Niehaus, K., Boller, T., & Hirt, H. (2000). Journal of Biological Chemistry, 275, 36734–36740.

    Article  CAS  Google Scholar 

  37. Flores, I. I., Zúñiga-Aguilar, J. J., Rodríguez-Zapata, L. C., Carrillo-Pech, M., Baízabal-Aguirre, V. M., Minero-García, Y., et al. (2004). Plant Physiology and Biochemistry, 42, 65–72.

    Article  Google Scholar 

  38. Mora-Alvarez, Y. G., Nova-Vergas, J. M., Valle-Villanueva, López-Gómez, R., López-Meza, J. E., Valdez-Alarcón, J. J., et al. (2004). Plant Science, 167, 561–567.

    Article  CAS  Google Scholar 

  39. Yang, K., Liu, Y., & Zhang, S. (2001). Proc. Natl. Acad. Sci., 16, 741–746.

    Article  Google Scholar 

  40. Peebles, C. A., Shanks, J. V., & San, K. Y. (2009). Biotechnology and Bioengineering, 15, 1248–1254.

    Article  Google Scholar 

  41. Peebles, C. A., Huges, E. H., Shanks, J. V., & San, K. Y. (2009). Metabolic Engineering, 11, 76–86.

    Article  CAS  Google Scholar 

  42. Menke, F. L. H., Parchmann, S., Mueller, M. J., Kijne, J. W., & Memelink, J. (1999). Plant Physiology, 119, 1289–1296.

    Article  CAS  Google Scholar 

  43. Zhou, M. L., Zhu, X. M., Shao, J. R., Wu, Y. M., & Tang, Y. X. (2010). Applied Microbiology and Biotechnology, 88, 737–750.

    Article  CAS  Google Scholar 

  44. Spollansky, T. C., Pitta-Alvarez, S. I., & Giulietti, A. M. (2000). Electronic Journal of Biotechnology, 3, 72–75.

    Google Scholar 

  45. Gaviraj, E. N., & Veeresham, C. (2006). Pharmaceutical Biology, 44, 371–377.

    Article  CAS  Google Scholar 

  46. Staniszewska, I., Krolicka, A., Malinski, E., Lojkowska, E., & Szafranek, J. (2003). Enzyme and Microbial Technology, 33, 565–568.

    Article  CAS  Google Scholar 

  47. Nakanishi, F., Yuki, N., Yumi, K., Hiroyuki, S., & Shimimura, K. (2005). Plant Physiology and Biochemistry, 43, 921–928.

    Article  CAS  Google Scholar 

  48. Zid, S. A., & Orihara, Y. (2005). Plant Cell Tiss. Org. Cult., 81, 65–75.

    Article  CAS  Google Scholar 

  49. Howe, G. A. (2004). Journal of Plant Growth Regulation, 23, 223–237.

    CAS  Google Scholar 

  50. Pozo, M. J., Loon, L. C. V., & Corne, M. J. P. (2005). J. Plant Growth Regul., 23, 211–222.

    Google Scholar 

  51. Schaller, F. (2001). Journal of Experimental Botany, 354, 11–23.

    Article  Google Scholar 

  52. Singh, G., Gavrieli, J., Oakey, J. S., & Curtis, W. R. (1998). Plant Cell Reports, 17, 391–395.

    Article  CAS  Google Scholar 

  53. Biondi, S., Fornale, S., Oksman-caldentey, K. M., Eeva, M., Agostani, S., & Bagni, N. (2000). Plant Cell Reports, 19, 691–697.

    Article  CAS  Google Scholar 

  54. Taguchi, G., Yazawa, T., Hayashida, N., & Okazaki, M. (2001). European Journal of Biochemistry, 268, 4086–4094.

    Article  CAS  Google Scholar 

  55. Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). Biotechnology Letters, 22, 1653–1656.

    Article  CAS  Google Scholar 

  56. Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). Enzyme and Microbial Technology, 26, 252–258.

    Article  CAS  Google Scholar 

  57. Kang, S. M., Jung, H. Y., Kang, Y. M., yun, D. J., Bahk, J. D., & Yang, J. (2004). Plant Sci., 166, 745–751.

    Article  CAS  Google Scholar 

  58. Stepanova, A. N., & Ecker, J. R. (2000). Current Opinion in Plant Biology, 3, 353–360.

    Article  CAS  Google Scholar 

  59. Bruce, W., Folkerts, O., Garnaat, C., Crasta, O., Roth, B., & Bowen, B. (2000). The Plant Cell, 12, 65–79.

    Article  CAS  Google Scholar 

  60. Davies, K. M., & Schwinn, K. E. (2003). Functional Plant Biology, 30, 913–925.

    Article  CAS  Google Scholar 

  61. De’bora, V. E., Kijne, J. W., & Memelink, J. (2002). Phytochemistry, 61, 107–114.

    Article  Google Scholar 

  62. Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K., & Somissich, I. E. (1999). EMBO Journal, 18, 4689–4699.

    Article  CAS  Google Scholar 

  63. Lozovaya, V. V., Lygin, A. V., Zernova, O. V., Li, S., Hartman, G. L., & Widholm, J. M. (2004). Plant Physiology and Biochemistry, 42, 671–679.

    Article  CAS  Google Scholar 

  64. Oktem, H. A., Eyidogan, F., Selcuk, F., Oz, M. T., Teixeira, J. A., & Yucel, M. (2008). Genes, Genomes and Genomics, 2, 14–48.

    Google Scholar 

  65. Bhagwath, S. G., & Hjortso, M. A. (2000). Journal of Biotechnology, 80, 159–167.

    Article  CAS  Google Scholar 

  66. Wang, J. W., Kong, F. X., & Tan, R. X. (2002). Biotechnology Letters, 24, 1573–1577.

    Article  CAS  Google Scholar 

  67. Lee, K.T., Yamakawa, T., Kodama, T., Shimomura, K. (1998) 49, 2343–2347.

  68. Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Journal of Biotechnology, 128, 281–289.

    Article  CAS  Google Scholar 

  69. Thimmaraju, R. N., Bhagyalakshmi, N., Narayan, S., & Ravishankar, G. A. (2003). Process Biochemistry, 38, 1069–1076.

    Article  CAS  Google Scholar 

  70. Suresh, B., Thimmaraju, R., Bhagyalakshmi, N., & Ravishanker, G. A. (2004). Process Biochemistry, 39, 2091–2096.

    Article  CAS  Google Scholar 

  71. Patricia, M., Moctezuma, L., & Gloria, L. E. (1996). Plant Cell Reports, 15, 360–366.

    Article  Google Scholar 

  72. Rijhwani, S., & Shanks, J. V. (1998). Biotechnology Progress, 14, 442–445.

    Article  CAS  Google Scholar 

  73. Zabetakis, I., Edwards, R., & O’Hagan, D. (1999). Phytochemistry, 50, 53–56.

    Article  CAS  Google Scholar 

  74. Ghosh, B., Mukherjee, S., Jha, T. B., & Jha, S. (2002). Biotechnology Letters, 24, 231–234.

    Article  CAS  Google Scholar 

  75. Kuroyanagi, M., Takeshi, A., Yoji, M., Kenichi, Y., Nobou, K., & Tatsuo, H. (1998). Journal of Natural Products, 61, 1516–1519.

    Article  CAS  Google Scholar 

  76. Bais, H. P., Walker, T. S., Herbert, P. S., & Vivanco, J. M. (2002). Plant Physiology and Biochemistry, 40, 983–995.

    Article  CAS  Google Scholar 

  77. Yu, K. W., Gao, W. Y., Son, S. H., & Paek, K. Y. (2000). In Vitro Cellular and Developmental Biology-Plant, 36, 424–428.

    Article  CAS  Google Scholar 

  78. Zhou, L., Xiaodong, C., Zhang, R., Peng, Y., Zhou, S., & Wu, J. (2007). Biotechnology Letters, 29, 631–634.

    Article  CAS  Google Scholar 

  79. Palazón, J., Cusidó, R. M., Bonfill, M., Mallol, A., Moyano, E., Morales, C., et al. (2003). Plant Physiology and Biochemistry, 41, 1019–1025.

    Article  Google Scholar 

  80. Yaoya, S., Kanho, H., Mikami, Y., Itani, T., Umehara, K., & Kuroyanagi, M. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 1837–1841.

    Article  CAS  Google Scholar 

  81. Yan, Q., Hu, Z., Ren, X. T., & Wu, J. (2005). Journal of Biotechnology, 119, 416–424.

    Article  CAS  Google Scholar 

  82. Chen, H., Chen, F., Chiu, F. C., & Lo, C. M. (2001). Enzyme and Microbial Technology, 28, 100–105.

    Article  CAS  Google Scholar 

  83. Ge, X., & Wu, J. (2005). Applied Microbiology and Biotechnology, 68, 183–188.

    Article  CAS  Google Scholar 

  84. Ge, X., & Wu, J. (2005). Plant Science, 168, 487–491.

    Article  CAS  Google Scholar 

  85. Jung, H. Y., Seung-Mi, K., Young-Min, K., Min-Jung, K., Dea-Jin, Y., Jung-Dong, B., et al. (2003). Enzyme and Microbial Technology, 33, 987–990.

    Article  CAS  Google Scholar 

  86. Komariah, P., Reddy, G. V., Reddy, P. S., Raghavendra, A. S., Ramakrishna, S. V., & Reddanna, P. (2003). Biotechnology Letters, 25, 593–597.

    Article  Google Scholar 

  87. Ermayanti, T. M., McComb, J. A., & O’Brien, P. A. (1994). Phytochemistry, 36, 313–317.

    Article  CAS  Google Scholar 

  88. Mukundan, U., & Hjortso, M. (1990). Biotechnology Letters, 12, 609–614.

    Article  CAS  Google Scholar 

  89. Merkli, A., Christen, P., & Kapetanidis, I. (1997). Plant Cell Reports, 16, 632–636.

    Article  CAS  Google Scholar 

  90. Wielanek, M., & Urbanek, H. (2006). Plant Cell, Tissue Organ Culture, 86, 177–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Post-Doctoral Fellowship by Department of Science & Technology, India to SM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti Mehrotra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, M.K., Mehrotra, S. & Kukreja, A.K. Elicitor-Induced Cellular and Molecular Events Are Responsible for Productivity Enhancement in Hairy Root Cultures: An Insight Study. Appl Biochem Biotechnol 165, 1342–1355 (2011). https://doi.org/10.1007/s12010-011-9351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9351-7

Keywords

Navigation