Skip to main content

Advertisement

Log in

Onsite Enzyme Production During Bioethanol Production from Biomass: Screening for Suitable Fungal Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulosic ethanol production from biomass raw materials involves process steps such as pre-treatment, enzymatic hydrolysis, fermentation, and distillation. Use of streams within cellulosic ethanol production was explored for onsite enzyme production as part of a biorefinery concept. Sixty-four fungal isolates were in plate assays screened for lignocellulolytic activities to discover the most suitable fungal strain with efficient hydrolytic enzymes for lignocellulose conversion. Twenty-five were selected for further enzyme activity studies using a stream derived from the bioethanol process. The filter cake left after hydrolysis and fermentation was chosen as substrate for enzyme production. Five of the 25 isolates were further selected for synergy studies with commercial enzymes, Celluclast 1.5L and Novozym 188. Finally, IBT25747 (Aspergillus niger) and strain AP (CBS 127449, Aspergillus saccharolyticus) were found as promising candidates for onsite enzyme production where the filter cake was inoculated with the respective fungus and in combination with Celluclast 1.5L used for hydrolysis of pre-treated biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. NREL National Renewable Energy Laboratory. Biomass Research - Biochemical Conversion Projects 2009. Available at: http://www.nrel.gov/biomass/proj_biochemical_conversion.html. Updated October 2009.

  2. Knauf, M., & Moniruzzaman, M. (2004). Lignocellulosic biomass processing: a perspective. International Sugar Journal, 106, 147–150.

    CAS  Google Scholar 

  3. Ahring, B. K., & Westermann, P. (2007). Coproduction of bioethanol with other biofuels. Biofuels, 108, 289–302.

    Article  CAS  Google Scholar 

  4. Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Current Science, 77, 149–162.

    CAS  Google Scholar 

  5. Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  6. Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804–816.

    Article  CAS  Google Scholar 

  7. Zhang, Y.-P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  8. Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2008). Progress in research on fungal cellulases for lignocellulose degradation. Journal of Scientific and Industrial Research, 67, 898–907.

    CAS  Google Scholar 

  9. NREL National Renewable Energy Laboratory. Biomass research - Standard Biomass Analytical procedures 2010. Available at: http://www.nrel.gov/biomass/analytical_procedures.html. Updated September 2010.

  10. Samson, R. A., Hoekstra, E. S., & Frisvad, J. C. (2004). Introduction to Food- and Airborne Fungi. Centralbureau voor Schimmelcultures (7th ed.). Utrecht, Netherlands: American Society Microbiology.

    Google Scholar 

  11. Wood, T. M., & Bhat, K. M. (1988). Methods for Measuring Cellulase Activities. Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  12. Flachner, B., Brumbauer, A., & Reczey, K. (1999). Stabilization of beta-glucosidase in Aspergillus phoenicis QM 329 pellets. Enzyme and Microbial Technology, 24, 362–367.

    Article  CAS  Google Scholar 

  13. Ghose, T. K. (1987). Measurement of Cellulase Activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M. B., Kilburn, D., et al. (2005). Weak lignin-binding enzymes—a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Applied Biochemistry and Biotechnology, 121, 163–170.

    Article  Google Scholar 

  16. Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  17. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  18. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  19. Pedersen, M., Hollensted, M., Lange, L., & Andersen, B. (2009). Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium. International Biodeterioration & Biodegradation, 63, 484–489.

    Article  CAS  Google Scholar 

  20. Alriksson, B., Rose, S. H., van Zyl, W. H., Sjode, A., Nilvebrant, N., & Jonsson, L. J. (2009). Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology, 75, 2366–2374.

    Article  CAS  Google Scholar 

  21. Dien, B. S., Li, X., Iten, L. B., Jordan, D. B., O'Bryan, P. J., & Cotta, M. A. (2006). Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme and Microbial Technology, 39, 1137–1144.

    Article  CAS  Google Scholar 

  22. Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., & Steinmuller, H. (1987). The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Applied Microbiology and Biotechnology, 26, 485–494.

    Article  CAS  Google Scholar 

  23. Gupte, A., & Madamwar, D. (1997). Solid state fermentation of lignocellulosic waste for cellulase and beta-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnology Progress, 13, 166–169.

    Article  CAS  Google Scholar 

  24. Thygesen, A., Thomsen, A. B., Schmidt, A. S., Jorgensen, H., Ahring, B. K., & Olsson, L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 32, 606–615.

    Article  CAS  Google Scholar 

  25. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  26. Beguin, P., & Aubert, J. P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews, 13, 25–58.

    Article  CAS  Google Scholar 

  27. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  28. Sørensen, A., Lübeck, P.S., Lübeck, M., Nielsen, K.F., Ahring, B.K., Teller, P.J., Frisvad, J.C. (2011). Aspergillus saccharolyticus sp. nov., a new black Aspergillus species isolated in Denmark. International Journal of Systematic and Evolutionary Microbiology (in press)

Download references

Acknowledgements

The project was financially supported by the Danish Council for Strategic Research. Furthermore, Mette Lübeck, Section for Sustainable Biotechnology, Aalborg University Copenhagen, is acknowledged for revision of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte K. Ahring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, A., Teller, P.J., Lübeck, P.S. et al. Onsite Enzyme Production During Bioethanol Production from Biomass: Screening for Suitable Fungal Strains. Appl Biochem Biotechnol 164, 1058–1070 (2011). https://doi.org/10.1007/s12010-011-9194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9194-2

Keywords

Navigation