Skip to main content
Log in

Reduction of Benzaldehyde Catalyzed by Papain-Based Semisynthetic Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Some features of native enzyme’s active site were used to conjunction with a chemical reagent or modifying group, which would generate new functionality different from the natural enzyme. In order to obtain an efficient catalyst, we have designed four different molecular size N-derivatives of modifiers and introduced them into the active site of papain to obtain new semisynthetic enzymes, which were used as catalyst in reduction of benzaldehyde to yield benzyl alcohol respectively, and the reactions carried out with recycling agent in 0.1 M phosphate buffer pH 6.5 at 37 °C. The results had shown that a longer N-derivative of semisynthetic enzyme had higher catalytic activity. Furthermore, we propose a plausible model for the catalytic mechanism in the semisynthetic enzymes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeSantis, G. & Jones, J. B. (1999). Current Opinion in Biotechnology, 10, 324–330.

    Article  CAS  Google Scholar 

  2. Kaiser, E. T. & Lawrence, D. S. (1984). Science, 226, 505–511.

    Article  CAS  Google Scholar 

  3. Levine, H. L. & Kaiser, E. T. (1978). Journal of the American Chemical Society, 100, 7670–7677.

    Article  CAS  Google Scholar 

  4. Slama, J. T., Radziejewski, C., Oruganti, S. R., & Kaiser, E. T. (1984). Journal of the American Chemical Society, 106, 6778–6785.

    Article  CAS  Google Scholar 

  5. Fried, H. E. & Kaiser, E. T. (1981). Journal of the American Chemical Society, 103, 182–184.

    Article  CAS  Google Scholar 

  6. Slama, J. T., Oruganti, S. R., & Kaiser, E. T. (1981). Journal of the American Chemical Society, 103, 6211–6213.

    Article  CAS  Google Scholar 

  7. Levine, H. L. & Kaiser, E. T. (1980). Journal of the American Chemical Society, 102, 343–345.

    Article  CAS  Google Scholar 

  8. Rokita, S. E. & Kaiser, E. T. (1986). Journal of the American Chemical Society, 108, 4984–4987.

    Article  CAS  Google Scholar 

  9. Radziejewski, C., Ballou, D. P., & Kaiser, E. T. (1985). Journal of the American Chemical Society, 107, 3352–3354.

    Article  CAS  Google Scholar 

  10. Stewart, K. D., Radziejewski, C., & Kaiser, E. T. (1986). Journal of the American Chemical Society, 108, 3480–3483.

    Article  CAS  Google Scholar 

  11. Distefano, M. D., Kuang, H., Qi, D. F., & Mazhary, A. (1998). Current Opinion in Structural Biology, 8, 459–465.

    Article  CAS  Google Scholar 

  12. Kuang, H., Brown, M. L., Davies, R. R., Young, E. C., & Distefano, M. D. (1996). Journal of the American Chemical Society, 188, 10702–10706.

    Article  Google Scholar 

  13. Haring, D., Kuang, H., Qi, D. F., & Distefano, M. D. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 967–970.

    Article  CAS  Google Scholar 

  14. Häring, D. & Distefano, M. D. (2001). Bioorganic and Medicinal Chemistry, 9, 2461–2466.

    Article  Google Scholar 

  15. Davies, R. R., Kuang, H., Qi, D. F., Mazhary, A., Mayaan, E., & Distefano, M. D. (1999). Bioorganic and Medicinal Chemistry Letters, 9, 79–84.

    Article  CAS  Google Scholar 

  16. Kuang, H., Häring, D., Qi, D. F., Mazhary, A., & Distefano, M. D. (2000). Bioorganic and Medicinal Chemistry, 10, 2091–2095.

    Article  CAS  Google Scholar 

  17. Kuang, H. & Distefano, M. D. (1998). Journal of the American Chemical Society, 120, 1072–1073.

    Article  CAS  Google Scholar 

  18. Drenth, J., Kalk, K. H., & Swen, H. M. (1976). Biochemist, 15, 3731–3738.

    Article  CAS  Google Scholar 

  19. Suckling, C. J. & Zhu, L. M. (1993). Bioorganic and Medicinal Chemistry Letters, 13, 531–534.

    Article  Google Scholar 

  20. Aitken, D. J., Alijah, R., & Onyiriuka, S. O. (1993). Approach to chemical modified enzymes as synthetic catalysts. Journal of the Chemical Society. Perkin Transactions, 1, 597–608.

    Article  Google Scholar 

  21. Szabó, A., Kotormán, M., Lacakó, I., & Simon, M. (2006). Journal of Molecular Catalysis. B, Enzymatic, 41, 43–48.

    Article  Google Scholar 

  22. Li-min Zhu. (1992). PhD Thesis, University of Strathclyde.

Download references

Acknowledgments

The authors would like to thank Dr. E.A. Carrey (ICH, UCL) for English proofreading and very useful discussion. This work was supported by Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Cx., Jiang, B., Carrey, E.A. et al. Reduction of Benzaldehyde Catalyzed by Papain-Based Semisynthetic Enzymes. Appl Biochem Biotechnol 162, 1506–1516 (2010). https://doi.org/10.1007/s12010-009-8856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8856-9

Keywords

Navigation