Skip to main content
Log in

Directed Evolution of a Thermophilic β-glucosidase for Cellulosic Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Characteristics that would make enzymes more desirable for industrial applications can be improved using directed evolution. We developed a directed evolution technique called random drift mutagenesis (RNDM). Mutant populations are screened and all functional mutants are collected and put forward into the next round of mutagenesis and screening. The goal of this technique is to evolve enzymes by rapidly accumulating mutations and exploring a greater sequence space by providing minimal selection pressure and high-throughput screening. The target enzyme was a β-glucosidase isolated from the thermophilic bacterium, Caldicellulosiruptor saccharolyticus that cleaves cellobiose resulting from endoglucanase hydrolysis of cellulose. Our screening method was fluorescence-activated cell sorting (FACS), an attractive method for assaying mutant enzyme libraries because individual cells can be screened, sorted into distinct populations and collected very rapidly. However, FACS screening poses several challenges, in particular, maintaining the link between genotype and phenotype because most enzyme substrates do not remain associated with the cells. We employed a technique where whole cells were encapsulated in cell-like structures along with the enzyme substrate. We used RNDM, in combination with whole cell encapsulation, to create and screen mutant β-glucosidase libraries. A mutant was isolated that, compared to the wild type, had higher specific and catalytic efficiencies (k cat/K M) with p-nitrophenol-glucopyranoside and -galactopyranoside, an increased catalytic turnover rate (k cat) with cellobiose, an improvement in catalytic efficiency with lactose and reduced inhibition (K i) with galactose and lactose. This mutant had three amino acid substitutions and one was located near the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shewale, J. G. (1982). International Journal of Biochemistry, 14, 435–443.

    Article  CAS  Google Scholar 

  2. Turner, P., Mamo, G., & Karlsson, E. (2007). Microbial Cell Factories, 6, 9.

    Article  Google Scholar 

  3. Nakkharat, P., & Haltrich, D. (2006). Journal of Biotechnology, 123, 304–313.

    Article  CAS  Google Scholar 

  4. Sun, Y., & Cheng, J. (2002). Bioresources Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  5. Saha, B. C., & Bothast, R. J. (1996). Applied and Environmental Microbiology, 62, 3165–3170.

    CAS  Google Scholar 

  6. Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., et al. (2008). Metabolic Engineering, 10, 370–381.

    Article  CAS  Google Scholar 

  7. Novalin, S., Neuhaus, W., & Kulbe, K. D. (2005). Journal of Biotechnology, 119, 212–218.

    Article  CAS  Google Scholar 

  8. Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2000). Applied Biochemistry and Biotechnology, 90, 155–186.

    Article  Google Scholar 

  9. Bergquist, P. L., Reeves, R. A., & Gibbs, M. D. (2005). Biomolecular Engineering, 22, 63–72.

    Article  CAS  Google Scholar 

  10. Gupta, R. D., & Tawfik, D. S. (2008). Nature Methods, 5, 939–942.

    Article  CAS  Google Scholar 

  11. Bershtein, S., Goldin, K., & Tawfik, D. S. (2008). Journal of Molecular Biology, 379, 1029–1044.

    Article  CAS  Google Scholar 

  12. Bershtein, S., & Tawfik, D. S. (151). Biocatalysis and biotransformation/Bioinorganic chemistry, 12, 158.

    Google Scholar 

  13. Aharoni, A., Griffiths, A. D., & Tawfik, D. S. (2005). Current Opinion in Chemical Biology, 9, 210–216.

    Article  CAS  Google Scholar 

  14. Tawfik, D. S., & Griffiths, A. D. (1998). Nature Biotechnology, 16, 652–656.

    Article  CAS  Google Scholar 

  15. Miller, O. J., Bernath, K., Agresti, J. J., Amitai, G., Kelly, B. T., Mastrobattista, E., et al. (2006). Nature Methods, 3, 561–570.

    Article  CAS  Google Scholar 

  16. Bernath, K., Hai, M., Mastrobattista, E., Griffiths, A., Magdassi, S., & Tawfik, D. S. (2003). Analytical Biochemistry, 325, 151–157.

    Article  Google Scholar 

  17. Aharoni, A., Amitai, G., Bernath, K., Magdassi, S., & Tawfik, D. S. (2005). Chemistry and Biology, 12, 1281–1289.

    Article  CAS  Google Scholar 

  18. Love, D. R., Fisher, R., & Bergquist, P. L. (1988). Molecular Genetics and Genomics, 213, 84–92.

    CAS  Google Scholar 

  19. Cadwell, R. C., & Joyce, G. F. (1992). PCR Methods and Applications, 2, 28–33.

    CAS  Google Scholar 

  20. Rothe, A., Surjadi, R. N., & Power, B. E. (2006). Trends in Biotechnology, 24, 587–592.

    Article  CAS  Google Scholar 

  21. Beveridge, T. J. (1999). Journal of Bacteriology, 181, 4725–4733.

    CAS  Google Scholar 

  22. Roodveldt, C., Aharoni, A., & Tawfik, D. S. (2005). Current Opinion in Structural Biology, 15, 50–56.

    Article  CAS  Google Scholar 

  23. Gloster, T. M., Macdonald, J. M., Tarling, C. A., Stick, R. V., Withers, S. G., & Davies, G. J. (2004). The Journal of Biological Chemistry, 279, 49236–49242.

    Article  CAS  Google Scholar 

  24. Bergquist, P., Hardiman, E., Ferrari, B., & Winsley, T. (2009). Extremophiles, 3, 389–401.

    Article  Google Scholar 

Download references

Acknowledgements

Research at Macquarie was made possible by grants from the Australian Research Council, the Macquarie University Innovation Grants Fund and from Applimex Systems Pty Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bergquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardiman, E., Gibbs, M., Reeves, R. et al. Directed Evolution of a Thermophilic β-glucosidase for Cellulosic Bioethanol Production. Appl Biochem Biotechnol 161, 301–312 (2010). https://doi.org/10.1007/s12010-009-8794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8794-6

Keywords

Navigation