Skip to main content

Advertisement

Log in

Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass–Animal Manure Mixtures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure–switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 °C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4 /g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borole, A. P., Klasson, K. T., Ridenour, W., Holland, J., Karim, K., & Al-Dahhan, M. H. (2006). Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Applied Biochemistry and Biotechnology, 129/132, 887–896. doi:10.1385/ABAB:131:1:887.

    Article  Google Scholar 

  2. Schäfer, W., Letho, M., & Teye, F. (2006). Dry anaerobic digestion of organic residues on-farm—a feasibility study. Vihti, Finland: MTT Agrifood Research Finland.

    Google Scholar 

  3. McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28, 515–535. doi:10.1016/j.biombioe.2004.05.006.

    Article  Google Scholar 

  4. Parrish, J., & Fike, J. H. (2005). The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences, 24, 423–459. doi:10.1080/07352680500316433.

    Article  Google Scholar 

  5. Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., Parrish, D. J., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresource Technology, 56, 83–93. doi:10.1016/0960-8524(95)00176-X.

    Article  CAS  Google Scholar 

  6. McLaughlin, S. B., & Walsh, M. E. (1998). Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass and Bioenergy, 14, 317–324. doi:10.1016/S0961-9534(97)10066-6.

    Article  CAS  Google Scholar 

  7. Tillman, D. A. (2002). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19, 365–384. doi:10.1016/S0961-9534(00)00049-0.

    Article  Google Scholar 

  8. McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83, 47–54. doi:10.1016/S0960-8524(01)00119-5.

    Article  CAS  Google Scholar 

  9. Dien, B. S., Jung, H. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Weimer, P. J., et al. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 30, 880–891. doi:10.1016/j.biombioe.2006.02.004.

    Article  CAS  Google Scholar 

  10. Noike, T., Endo, G., Chang, J., Yaguchi, J., & Matsumoto, J. (1985). Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion. Biotechnology and Bioengineering, 27, 1482–1489. doi:10.1002/bit.260271013.

    Article  CAS  Google Scholar 

  11. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). New York, USA: American Public Health Association.

    Google Scholar 

  12. Demirer, G. N., & Chen, S. (2008). Anaerobic biogasification of undiluted dairy manure in leaching bed reactors. Waste Management (New York, N.Y.), 28, 112–119. doi:10.1016/j.wasman.2006.11.005.

    CAS  Google Scholar 

  13. Lu, S., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences (China), 19, 416–420. doi:10.1016/S1001-0742(07)60069-2.

    CAS  Google Scholar 

  14. Veenken, K., Kalyuzhnyi, S., Scharff, H., & Hamelers, B. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering, 126, 1076–1081. doi:10.1061/(ASCE)0733-9372(2000)126:12(1076).

    Article  Google Scholar 

  15. Kim, M., Ahn, Y., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36, 4369–4385. doi:10.1016/S0043-1354(02)00147-1.

    Article  CAS  Google Scholar 

  16. Veenken, K., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69, 249–254. doi:10.1016/S0960-8524(98)00188-6.

    Article  Google Scholar 

  17. MØller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33, 27–36.

    Article  Google Scholar 

  18. Paul, J. W., & Beauchamp, E. G. (1989). Relationship between volatile fatty acids, total ammonia and pH in manure slurries. Biological Wastes, 29, 313–318. doi:10.1016/0269-7483(89)90022-0.

    Article  CAS  Google Scholar 

  19. Mashandete, A., BjÖrnsson, L., Kivaisi, A. K., Rubindamayugi, M. S. T., & Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fiber waste. Renewable Energy, 31, 2385–2392. doi:10.1016/j.renene.2005.10.015.

    Article  CAS  Google Scholar 

  20. Hasen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12. doi:10.1016/S0043-1354(97)00201-7.

    Article  Google Scholar 

  21. Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74, 3–16. doi:10.1016/S0960-8524(00)00023-7.

    Article  CAS  Google Scholar 

  22. Stirk, D. P. B. T. B., Domnanovich, A. M., & Holubar, P. (2006). A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 41, 1235–1238. doi:10.1016/j.procbio.2005.12.008.

    Article  CAS  Google Scholar 

  23. Myint, M. T., & Nirmalakhandan, N. (2009). Enhancing anaerobic hydrolysis of cattle manure in leachbed reactors. Bioresource Technology, 100, 1695–1699. doi:10.1016/j.biortech.2008.09.031.

    Article  CAS  Google Scholar 

  24. Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40, 1285–1292. doi:10.1016/j.procbio.2004.05.008.

    Article  CAS  Google Scholar 

  25. Byukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochemistry, 39, 1491–1494. doi:10.1016/S0032-9592(03)00295-4.

    Article  CAS  Google Scholar 

  26. Ahn, H. K., Richard, T. L., & Choi, H. L. (2007). Mass and thermal balance during composting of a poultry manure—wood shavings mixtures at different aeration rates. Process Biochemistry, 42, 215–223. doi:10.1016/j.procbio.2006.08.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Samuel Bosco for his help with the anaerobic digestion system setup and sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, H.K., Smith, M.C., Kondrad, S.L. et al. Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass–Animal Manure Mixtures. Appl Biochem Biotechnol 160, 965–975 (2010). https://doi.org/10.1007/s12010-009-8624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8624-x

Keywords

Navigation