Skip to main content
Log in

On the use of structural dynamics in virtual manufacturing

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper addresses the use of structural dynamics concepts applied to virtual manufacturing. A review of vibration fundamentals is done using a single degree of freedom system. Then, a lab procedure to experimentally determine the frequency response functions and vibration modes of a steel beam by modal fitting is explained. An introduction to receptance coupling substructure analysis is then provided, using an example with two single-degree-of-freedom systems, which are assembled through a flexible coupling. Finally, milling dynamics concepts are introduced, and the stability lobe diagram for an up milling condition is developed. This work provides an explanation of how to use structural dynamics to select cutting parameters that will provide an optimized performance of a milling machine, allowing to maximize profit of the productive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd edn. Cambridge University Press (2012). doi:10.1017/CBO9780511843723.005

  2. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 44(1), 357–362 (1995). doi:10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  3. Arrazola, P., Ozel, T., Umbrello, D., Davies, M., Jawahir, I.: Recent advances in modelling of metal machining processes. CIRP Ann. Manuf. Technol. 62(2), 695–718 (2013). doi:10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  4. Asad, M., Mabrouki, T., Rigal, J.F.: On the tool vibration effects during down-cut peripheral milling process. Int. J. Interact. Des. Manuf. (IJIDeM) 4(4), 215–225 (2010). doi:10.1007/s12008-010-0102-8

    Article  Google Scholar 

  5. Bediz, B., Kumar, U., Schmitz, T.L., Ozdoganlar, O.B.: Modeling and experimentation for three-dimensional dynamics of endmills. Int. J. Mach. Tools Manuf. 53(1), 39–50 (2012). doi:10.1016/j.ijmachtools.2011.09.005

    Article  Google Scholar 

  6. Bishop, R., Johnson, D.: The Mechanics of Vibration. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

  7. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Krieger Pub Company, New York (2001). (Reissue edition)

    Google Scholar 

  8. Duncan, G., Tummond, M., Schmitz, T.: An investigation of the dynamic absorber effect in high-speed machining. Int. J. Mach. Tools Manuf. 45(4–5), 497–507 (2005). doi:10.1016/j.ijmachtools.2004.09.005

    Article  Google Scholar 

  9. Filiz, S., Cheng, C.H., Powell, K., Schmitz, T., Ozdoganlar, O.: An improved tool-holder model for RCSA tool-point frequency response prediction. Precis. Eng. 33(1), 26–36 (2009). doi:10.1016/j.precisioneng.2008.03.003

    Article  Google Scholar 

  10. Fischer, X., Nadeau, J.P.: Integrated design and manufacturing in mechanical engineering. In: Research in Interactive Design, vol. 3. Springer, Paris, pp. 7–43 (2011). doi:10.1007/978-2-8178-0169-8_2

  11. Galdino-dos-Santos, R., Teixeira-Coelho, R.: A contribution to improve the accuracy of chatter prediction in machine tools using the stability lobe diagram. J. Manuf. Sci. Eng. 136(2), 021,005 (2014). doi:10.1115/1.4025514

    Article  Google Scholar 

  12. Khan, W.A., Raouf, A., Cheng, K.: Virtual Manufacturing. Springer, London (2011). doi:10.1007/978-0-85729-186-8_1

  13. Kumar, U.V.: Improved spindle dynamics identification technique for receptance coupling substructure analysis. Ph.D. thesis, Department of Mechanical and Aersopace Engineering, University of Florida (2012)

  14. Kumar, U.V., Schmitz, T.L.: Spindle dynamics identification for receptance coupling substructure analysis. Precis. Eng. 36(3), 435–443 (2012). doi:10.1016/j.precisioneng.2012.01.007

    Article  Google Scholar 

  15. Kurdi, M.H., Mann, B.P., Haftka, R.T., Schmitz, T.L.: A robust semi-analytical method for calculating the response sensitivity of a time delay system. J. Vib. Acoust. 130(6), 0645,041–0645,046 (2008). doi:10.1115/1.2981093

  16. Myers, B.A.: A brief history of human–computer interaction technology. Interactions 5(2), 44–54 (1998). doi:10.1145/274430.274436

    Article  Google Scholar 

  17. Paris, H., Peigné, G.: Influence of the cutting tool geometrical defects on the dynamic behaviour of machining. Int. J. Interact. Des. Manuf. (IJIDem) 1(1), 41–49 (2007). doi:10.1007/s12008-007-0005-5

    Article  Google Scholar 

  18. Schmitz, T., Donalson, R.: Predicting high-speed machining dynamics by substructure analysis. CIRP Ann. Manuf. Technol. 49(1), 303–308 (2000). doi:10.1016/S0007-8506(07)62951-5

    Article  Google Scholar 

  19. Schmitz, T.L.: Torsional and axial frequency response prediction by RCSA. Precis. Eng. 34(2), 345–356 (2010). doi:10.1016/j.precisioneng.2009.08.005

    Article  Google Scholar 

  20. Schmitz, T.L., Duncan, G.S.: Three-component receptance coupling substructure analysis for tool point dynamics prediction. J. Manuf. Sci. Eng. 127(4), 781–790 (2005). doi:10.1115/1.2039102

    Article  Google Scholar 

  21. Schmitz, T.L., Smith, K.S.: Machining Dynamics. Frequency Response to Improved Productivity. Springer, New York (2009). doi:10.1007/978-0-387-09645-2

  22. Tani, G., Bedini, R., Fortunato, A., Mantega, C.: Dynamic hybrid modeling of the vertical z axis in a high-speed machining center: towards virtual machining. J. Manuf. Sci. Eng. 129(4), 780–788 (2007). doi:10.1115/1.2738097

    Article  Google Scholar 

  23. Tlusty, G.: Manufacturing Processes and Equipment. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  24. Tlusty, J., Polacek, M.: The stability of machine tools against self excited vibrations. Int. Res. Prod. Eng. 1, 465–474 (1963)

    Google Scholar 

Download references

Acknowledgments

This research was done with partial financial support from the U.S. Department of State, through the Fulbright Program; the University of Florida, through the Center for Latin American Studies and the Department of Mechanical and Aerospace Engineering; the Colombian Administrative Department of Science, Technology and Innovation: Colciencias; and the Universidad Pontificia Bolivariana, Medellin; through the Fulbright-Colciencias-DNP 2008 scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael E. Vasquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasquez, R.E. On the use of structural dynamics in virtual manufacturing. Int J Interact Des Manuf 11, 103–114 (2017). https://doi.org/10.1007/s12008-014-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-014-0240-5

Keywords

Navigation