Skip to main content
Log in

Local Gentamicin Delivery From Resorbable Viscous Hydrogels Is Therapeutically Effective

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

A CORR Insights to this article was published on 10 October 2014

Abstract

Background

Local delivery can achieve the high antimicrobial concentrations necessary to kill biofilm-related microbes. Degradation times for resorbable carriers are too long. Hydrogels (gels of hydrophilic polymer in water) can degrade faster but release antimicrobials too quickly. We previously developed hydrogels based on the copolymer poly(N-isopropylacrylamide-co-dimethyl-γ-butyrolactone acrylate-co-Jeffamine® M-1000 acrylamide) (PNDJ) with delivery times of several days with complete degradation in less than 6 weeks.

Questions/purposes

We asked: (1) What is the elution profile of gentamicin from PNDJ hydrogels? (2) Is gentamicin released from gentamicin-loaded PNDJ (G-PNDJ) hydrogel effective for treatment of orthopaedic infection? (3) Does local gentamicin delivery from G-PNDJ hydrogel cause renal dysfunction?

Methods

(1) Two formulations of G-PNDJ, lower dose (1.61 wt%) and higher dose (3.14 wt%), five samples each, were eluted in buffered saline under infinite sink conditions. (2) Infections were induced in 16 New Zealand White rabbits by inserting a Kirschner wire in a devascularized radius segment and inoculating with 7.5 × 106 colony-forming units Staphylococcus aureus. At 3 weeks, débridement was performed and a new Kirschner wire was placed in the dead space. Treatment was randomized to higher-dose G-PNDJ or no hydrogel. No systemic antimicrobials were used. Positive culture and acute inflammation on histology were used to determine the presence of infection 4 weeks postdébridement. (3) 3.14 wt% G-PNDJ, 0.75, 1.5, or 3.0 mL, was injected subcutaneously in nine Sprague-Dawley rats, three of each dose. Serum gentamicin, blood urea nitrogen, and creatinine were measured on Days 1, 3, 7, 14, and 28.

Results

(1) Gentamicin release was sustained over 7 days with the higher-dose formulation release profile similar to release from high-dose antimicrobial-loaded bone cement. (2) Four weeks postdébridement, infection was present in eight of eight no-hydrogel rabbits but zero of eight rabbits treated with G-PNDJ hydrogel (p < 0.001). (3) Blood urea nitrogen and creatinine were transiently elevated (p < 0.05) only for the two of three rats receiving the 3.0-mL dose on Days 3 and 7.

Conclusions

Gentamicin is delivered from PNDJ hydrogel with low systemic exposure and decreased treatment failure for orthopaedic infection. Transient renal dysfunction occurs at high doses. Biodistribution and toxicity testing are needed for G-PNDJ to be clinically usable.

Clinical Relevance

Resorbable viscous hydrogels for local antimicrobial delivery may improve outcomes for one-stage management of implant infections when uncemented reconstructions are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A–B
Fig. 3A–B
Fig. 4A–B
Fig. 5A–C

Similar content being viewed by others

References

  1. Adams K, Couch L, Cierny G, Calhoun J, Mader JT. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin Orthop Relat Res. 1992;278:244–252.

    PubMed  Google Scholar 

  2. Alt V, Bitschnau A, Böhner F, Heerich KE, Magesin E, Sewing A, Pavlidis T, Szalay G, Heiss C, Thormann U, Hartmann S, Pabst W, Wenisch S, Schnettler R. Effects of gentamicin and gentamicin-RGD coatings on bone ingrowth and biocompatibility of cementless joint prostheses: an experimental study in rabbits. Acta Biomater. 2011;7:1274–1280.

    Article  CAS  PubMed  Google Scholar 

  3. Alt V, Bitschnau A, Osterling J, Sewing A, Meyer C, Kraus R, Meissner SA, Wenisch S, Domann E, Schnettler R. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials. 2006;27:4627–4634.

    Article  CAS  PubMed  Google Scholar 

  4. Ambrose CG, Gogola GR, Clyburn TA, Raymond AK, Peng AS, Mikos AG. Antibiotic microspheres: preliminary testing for potential treatment of osteomyelitis. Clin Orthop Relat Res. 2003;415:279–285.

    Article  PubMed  Google Scholar 

  5. Anderson GG, O’Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol. 2008;322:85–105.

    CAS  PubMed  Google Scholar 

  6. Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, Speziale P, Montanaro L. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials. 2005;26:6530–6535.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett WM, Plamp CE, Gilbert DN, Parker RA, Porter GA. The influence of dosage regimen on experimental gentamicin nephrotoxicity: dissociation of peak serum levels from renal failure. J Infect Dis. 1979;140:576–580.

    Article  CAS  PubMed  Google Scholar 

  8. Bertrand N, Fleischer JG, Wasan KM, Leroux J-C. Pharmacokinetics and biodistribution of N-isopropylacrylamide copolymers for the design of pH-sensitive liposomes. Biomaterials. 2009;30:2598–2605.

    Article  CAS  PubMed  Google Scholar 

  9. Buranapanitkit B, Oungbho K, Ingviya N. The efficacy of hydroxyapatite composite impregnated with amphotericin B. Clin Orthop Relat Res. 2005;437:236–241.

    Article  PubMed  Google Scholar 

  10. Cabrita HB, Croci AT, de Camargo OP, de Lima ALLM. Prospective study of the treatment of infected hip arthroplasties with or without the use of an antibiotic-loaded cement spacer. Clin São Paulo Braz. 2007;62:99–108.

    Google Scholar 

  11. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–2339.

    Article  CAS  PubMed  Google Scholar 

  12. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37:1771–1776.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Cierny G. Surgical treatment of osteomyelitis. Plast Reconstr Surg. 2011;127(Suppl 1):190S–204S.

    Article  CAS  PubMed  Google Scholar 

  14. Cierny G, Mader JT, Penninck JJ. The Classic: A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. 2003;414:7–24.

    Article  PubMed  Google Scholar 

  15. Cohen L, Lapkin R, Kaloyanides GJ. Effect of gentamicin on renal function in the rat. J Pharmacol Exp Ther. 1975;193:264–273.

    CAS  PubMed  Google Scholar 

  16. Cui Z, Lee BH, Vernon BL. New hydrolysis-dependent thermosensitive polymer for an injectable degradable system. Biomacromolecules. 2007;8:1280–1286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Davies JP, O’Connor DO, Burke DW, Harris WH. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation. J Biomed Mater Res. 1989;23:379–397.

    Article  CAS  PubMed  Google Scholar 

  18. de Beer D, Stoodley P, Lewandowski Z. Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng. 1997;53:151–158.

    Article  PubMed  Google Scholar 

  19. DeNardo SJ, Yao Z, Lam KS, Song A, Burke PA, Mirick GR, Lamborn KR, O’Donnell RT, DeNardo GL. Effect of molecular size of pegylated peptide on the pharmacokinetics and tumor targeting in lymphoma-bearing mice. Clin Cancer Res. 2003;9:3854S–3864S.

    CAS  PubMed  Google Scholar 

  20. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Elkhatib WF, Khairalla AS, Ashour HM. Evaluation of different microtiter plate-based methods for the quantitative assessment of Staphylococcus aureus biofilms. Future Microbiol. 2014;9:725–735.

    Article  CAS  PubMed  Google Scholar 

  22. FDA Center for Drug Evaluation and Research (CDER). Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Rockville, MD, USA: Office of Training and Communications, Division of Drug Information, HFD-240 Center for Drug Evaluation and Research, Food and Drug Administration; 2005.

  23. Frame PT, Phair JP, Watanakunakorn C, Bannister TW. Pharmacologic factors associated with gentamicin nephrotoxicity in rabbits. J Infect Dis. 1977;135:952–956.

    Article  CAS  PubMed  Google Scholar 

  24. Frutos P, Torrado S, Perez-Lorenzo ME, Frutos G. A validated quantitative colorimetric assay for gentamicin. J Pharm Biomed Anal. 2000;21:1149–1159.

    Article  CAS  PubMed  Google Scholar 

  25. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13:34–40.

    Article  CAS  PubMed  Google Scholar 

  26. Giers MB, McLaren AC, Plasencia JD, Frakes D, McLemore R, Caplan MR. Spatiotemporal quantification of local drug delivery using MRI. Comput Math Methods Med. 2013;2013:149608.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gilbert DN, Plamp C, Starr P, Bennett WM, Houghton DC, Porter G. Comparative nephrotoxicity of gentamicin and tobramycin in rats. Antimicrob Agents Chemother. 1978;13:34–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002;46:202–256.

    PubMed  Google Scholar 

  29. Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS. Role of the accessory gene regulator (AGR) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995;63:3373–3380.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113:102–110.

    Article  CAS  PubMed  Google Scholar 

  31. Girard LP, Ceri H, Gibb AP, Olson M, Sepandj F. MIC versus MBEC to determine the antibiotic sensitivity of Staphylococcus aureus in peritoneal dialysis peritonitis. Perit Dial Int. 2010;30:652–656.

    Article  PubMed  Google Scholar 

  32. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–332.

    Article  PubMed  Google Scholar 

  33. Iarikov D, Demian H, Rubin D, Alexander J, Nambiar S. Choice and doses of antibacterial agents for cement spacers in treatment of prosthetic joint infections: review of published studies. Clin Infect Dis. 2012;55:1474–1480.

    Article  CAS  PubMed  Google Scholar 

  34. Koort JK, Suokas E, Veiranto M, Mäkinen TJ, Jalava J, Törmälä P, Aro HT. In vitro and in vivo testing of bioabsorbable antibiotic containing bone filler for osteomyelitis treatment. J Biomed Mater Res A. 2006;78:532–540.

    Article  PubMed  Google Scholar 

  35. Levine NS, Lindberg RB, Mason AD, Pruitt BA. The quantitative swab culture and smear: a quick, simple method for determining the number of viable aerobic bacteria on open wounds. J Trauma. 1976;16:89–94.

    Article  CAS  PubMed  Google Scholar 

  36. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–131.

    CAS  PubMed  Google Scholar 

  37. Loeb WF, Quimby F. Clinical Chemistry of Laboratory Animals. 2nd ed. Philadelphia, PA, USA: CRC Press; 1999.

    Google Scholar 

  38. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39.

    Article  CAS  PubMed  Google Scholar 

  39. Mayhall CG, Medoff G, Marr JJ. Variation in the susceptibility of strains of Staphylococcus aureus to oxacillin, cephalothin, and gentamicin. Antimicrob Agents Chemother. 1976;10:707–712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McLaren A, Giers MB, Fraser J, Hosack L, Caplan MR, McLemore R. Antimicrobial distribution from local delivery depends on dose: a pilot study with MRI. Clin Orthop Relat Res. 2014 Feb 8 [Epub ahead of print].

  41. Miller R, McLaren A, Leon C, McLemore R. Mixing method affects elution and strength of high-dose ALBC: a pilot study. Clin Orthop Relat Res. 2012;470:2677–2683.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Miller RB, McLaren AC, Leon CM, Vernon BL, McLemore R. Surfactant-stabilized emulsion increases gentamicin elution from bone cement. Clin Orthop Relat Res. 2011;469:2995–3001.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mingeot-Leclercq M-P, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43:1003–1012.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Moran JM, Greenwald AS, Matejczyk M-B. Effect of gentamicin on shear and interface strengths of bone cement. Clin Orthop Relat Res. 1979;141:96–101.

    CAS  PubMed  Google Scholar 

  45. Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 2004;42:1915–1922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nelson CL, Hickmon SG, Skinner RA. Treatment of experimental osteomyelitis by surgical débridement and the implantation of bioerodable, polyanhydride-gentamicin beads. J Orthop Res. 1997;15:249–255.

    Article  CAS  PubMed  Google Scholar 

  47. Nie L, Nicolau DP, Tessier PR, Kourea HP, Browner BD, Nightingale CH. Use of a bioabsorbable polymer for the delivery of ofloxacin during experimental osteomyelitis treatment. J Orthop Res. 1998;16:76–79.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimura S, Tsurumoto T, Yonekura A, Adachi K, Shindo H. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofilms isolated from infected total hip arthroplasty cases. J Orthop Sci. 2006;11:46–50.

    Article  CAS  PubMed  Google Scholar 

  49. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66:86–92.

    PubMed Central  PubMed  Google Scholar 

  50. Overstreet DJ, Huynh R, Jarbo K, McLemore RY, Vernon BL. In situ forming, resorbable graft copolymer hydrogels providing controlled drug release. J Biomed Mater Res A. 2013;101:1437–1446.

    Article  PubMed  Google Scholar 

  51. Overstreet DJ, McLemore RY, Doan BD, Farag A, Vernon BL. Temperature-responsive graft copolymer hydrogels for controlled swelling and drug delivery. Soft Mater. 2013;11:294–304.

    Article  CAS  Google Scholar 

  52. Penner MJ, Duncan CP, Masri BA. The in vitro elution characteristics of antibiotic-loaded CMW and Palacos-R bone cements. J Arthroplasty. 1999;14:209–214.

    Article  CAS  PubMed  Google Scholar 

  53. Ramage G, Tunney MM, Patrick S, Gorman SP, Nixon JR. Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials. 2003;24:3221–3227.

    Article  CAS  PubMed  Google Scholar 

  54. Saginur R, Stdenis M, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother. 2006;50:55–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Schierholz JM, Beuth J, König D, Nürnberger A, Pulverer G. Antimicrobial substances and effects on sessile bacteria. Zentralbl Bakteriol. 1999;289:165–177.

    Article  CAS  PubMed  Google Scholar 

  56. Simpson AH, Deakin M, Latham JM. Chronic osteomyelitis. The effect of the extent of surgical resection on infection-free survival. J Bone Joint Surg Br. 2001;83:403–407.

    Article  CAS  PubMed  Google Scholar 

  57. Skinner R, Hickmon S, Nelson C, Evans R. Correlation of histology with culture to more accurately determine experimental osteomyelitis. Orthop Trans. 1994:18598–99.

  58. Smeltzer MS, Thomas JR, Hickmon SG, Skinner RA, Nelson CL, Griffith D, Parr TR Jr, Evans RP. Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res. 1997;15:414–421.

    Article  CAS  PubMed  Google Scholar 

  59. Sorensen TS, Sorensen AI, Merser S. Rapid release of gentamicin from collagen sponge. Acta Orthop Scand. 1990;61:353–356.

    Article  CAS  PubMed  Google Scholar 

  60. Swieringa AJ, Goosen JHM, Jansman FGA, Tulp NJA. In vivo pharmacokinetics of a gentamicin-loaded collagen sponge in acute periprosthetic infection: serum values in 19 patients. Acta Orthop. 2008;79:637–642.

    Article  PubMed  Google Scholar 

  61. Tang W, Zhao J, Sha B, Liu H. Adsorption and drug release based on β-cyclodextrin-grafted hydroxyapatite composite. J Appl Polym Sci. 2013;127:2803–2808.

    Article  CAS  Google Scholar 

  62. VV Van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials. 2001;22:1607–1611.

  63. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Walton K, Dorne JLCM, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol. 2004;42:261–274.

    Article  CAS  PubMed  Google Scholar 

  65. Zaske DE, Cipolle RJ, Rotschafer JC, Solem LD, Mosier NR, Strate RG. Gentamicin pharmacokinetics in 1,640 patients: method for control of serum concentrations. Antimicrob Agents Chemother. 1982;21:407–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr Allan Dovigi for histopathological interpretation and the Arizona State University Department of Animal Care and Technologies for their assistance with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan McLemore PhD.

Additional information

Research reported in this manuscript was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number R41AR064080. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. One or more of the authors (DO, AM, BV, RM) have ownership in Sonoran Biosciences.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research ® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at Arizona State University, Tempe, AZ, USA.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overstreet, D., McLaren, A., Calara, F. et al. Local Gentamicin Delivery From Resorbable Viscous Hydrogels Is Therapeutically Effective. Clin Orthop Relat Res 473, 337–347 (2015). https://doi.org/10.1007/s11999-014-3935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3935-9

Keywords

Navigation