Skip to main content
Log in

History and Systematic Review of Wear and Osteolysis Outcomes for First-generation Highly Crosslinked Polyethylene

  • Symposium: UHMWPE for Arthroplasty: From Powder to Debris
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Highly crosslinked polyethylene (HXLPE) was introduced to reduce wear and osteolysis in total joint arthroplasty. While many studies report wear and osteolysis associated with HXLPE, analytical techniques, clinical study design and followup, HXLPE formulation and implant design characteristics, and patient populations differ substantially among investigations, complicating a unified perspective.

Questions/purposes

Literature on first-generation HXLPE was summarized. We systematically reviewed the radiographic wear data and incidence of osteolysis for HXLPE in hip and knee arthroplasty.

Methods

PubMed identified 391 studies; 28 met inclusion criteria for a weighted-averages analysis of two-dimensional femoral head penetration rates. To determine the incidence of osteolysis, we estimated a pooled odds ratio using a random-effects model.

Results

Weighted-averages analyses of femoral head penetration rates in HXLPE liners and conventional UHMWPE liners resulted, respectively, in a mean two-dimensional linear penetration rate of 0.042 mm/year based on 28 studies (n = 1503 hips) and 0.137 mm/year based on 18 studies (n = 695 hips). The pooled odds ratio for the risk of osteolysis in HXLPE versus conventional liners was 0.13 (95% confidence interval, 0.06–0.27) among studies with minimum 5-year followup. We identified two clinical studies of HXLPE in TKA, preventing systematic analysis of outcomes.

Conclusions

HXLPE liner studies consistently report lower femoral head penetration and an 87% lower risk of osteolysis. Reduction in femoral head penetration or osteolysis risk is not established for large-diameter (> 32 mm) metallic femoral heads or ceramic femoral heads of any size. Few studies document the clinical performance of HXLPE in knees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ainsworth R, Farling G, Bardos D. An improved bearing material for joint replacement prostheses: carbon fiber-reinforced UHMW polyethylene. In: Transactions of the 3rd Annual Meeting of the Society for Biomaterials. Minneapolis, MN: Society for Biomaterials; 1977:119.

  2. American Society for Testing and Materials. ASTM F2565-06. Standard Guide for Extensively Irradiation-Crosslinked Ultra-High Molecular Weight Polyethylene Fabricated Forms for Surgical Implant Applications. West Conshohocken, PA: American Society for Testing and Materials; 2006.

  3. Amstutz HC, Campbell P, McKellop H, Schmalzreid TP, Gillespie WJ, Howie D, Jacobs J, Medley J, Merritt K. Metal on metal total hip replacement workshop consensus document. Clin Orthop Relat Res. 1996;329(Suppl):S297–S303.

    PubMed  Google Scholar 

  4. August AC, Aldam CH, Pynsent PB. The McKee-Farrar hip arthroplasty: a long-term study. J Bone Joint Surg Br. 1986;68:520–527.

    PubMed  CAS  Google Scholar 

  5. Ayers DC, Hays PL, Drew JM, Eskander MS, Osuch D, Bragdon CR. Two-year radiostereometric analysis evaluation of femoral head penetration in a challenging population of young total hip arthroplasty patients. J Arthroplasty. 2009;24:9–14.

    PubMed  Google Scholar 

  6. Baker DA, Bellare A, Pruitt L. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res A. 2003;66:146–154.

    PubMed  CAS  Google Scholar 

  7. Baker DA, Hastings RS, Pruitt L. Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene. J Biomed Mater Res. 1999;46:573–581.

    PubMed  CAS  Google Scholar 

  8. Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am. 1986;68:1041–1051.

    PubMed  CAS  Google Scholar 

  9. Bartel DL, Rawlinson JJ, Burstein AH, Ranawat CS, Flynn WF Jr. Stresses in polyethylene components of contemporary total knee replacements. Clin Orthop Relat Res. 1995;317:76–82.

    PubMed  Google Scholar 

  10. Beksac B, Salas A, Gonzalez Della Valle A, Salvati EA. Wear is reduced in THA performed with highly cross-linked polyethylene. Clin Orthop Relat Res. 2009;467:1765–1772.

    PubMed  Google Scholar 

  11. Bell CJ, Walker PS, Abeysundera MR, Simmons JM, King PM, Blunn GW. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components. J Arthroplasty. 1998;13:280–290.

    PubMed  CAS  Google Scholar 

  12. Bhambri SK, Gsell R, Kirkpatrick L, Swarts D, Blanchard CR, Crowninshield RD. The effect of aging on mechanical properties of melt-annealed highly crosslinked UHMWPE. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  13. Bitsch RG, Loidolt T, Heisel C, Ball S, Schmalzried TP. Reduction of osteolysis with use of Marathon cross-linked polyethylene: a concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg Am. 2008;90:1487–1491.

    PubMed  Google Scholar 

  14. Bizot P, Nizard R, Lerouge S, Prudhommeaux F, Sedel L. Ceramic/ceramic total hip arthroplasty. J Orthop Sci. 2000;5:622–627.

    PubMed  CAS  Google Scholar 

  15. Blunn GW, Joshi AB, Minns RJ, Lidgren L, Lilley P, Ryd L, Engelbrecht E, Walker PS. Wear in retrieved condylar knee arthroplasties: a comparison of wear in different designs of 280 retrieved condylar knee prostheses. J Arthroplasty. 1997;12:281–290.

    PubMed  CAS  Google Scholar 

  16. Bostrom MP, Bennett AP, Rimnac CM, Wright TM. The natural history of ultra high molecular weight polyethylene. Clin Orthop Relat Res. 1994;309:20–28.

    PubMed  Google Scholar 

  17. Boutin P, Christel P, Dorlot JM, Meunier A, de Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J. The use of dense alumina-alumina ceramic combination in total hip replacement. J Biomed Mater Res. 1988;22:1203–1232.

    PubMed  CAS  Google Scholar 

  18. Bozic KJ, Kurtz S, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ. The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91:1614–1620.

    PubMed  Google Scholar 

  19. Bragdon CR, Barrett S, Martell JM, Greene ME, Malchau H, Harris WH. Steady-state penetration rates of electron beam-irradiated, highly cross-linked polyethylene at an average 45-month follow-up. J Arthroplasty. 2006;21:935–943.

    PubMed  Google Scholar 

  20. Bragdon CR, Greene ME, Freiberg AA, Harris WH, Malchau H. Radiostereometric analysis comparison of wear of highly cross-linked polyethylene against 36- vs 28-mm femoral heads. J Arthroplasty. 2007;22:125–129.

    PubMed  Google Scholar 

  21. Bragdon CR, Kwon YM, Geller JA, Greene ME, Freiberg AA, Harris WH, Malchau H. Minimum 6-year followup of highly cross-linked polyethylene in THA. Clin Orthop Relat Res. 2007;465:122–127.

    PubMed  Google Scholar 

  22. Calvert GT, Devane PA, Fielden J, Adams K, Horne JG. A double-blind, prospective, randomized controlled trial comparing highly cross-linked and conventional polyethylene in primary total hip arthroplasty. J Arthroplasty. 2009;24:505–510.

    PubMed  Google Scholar 

  23. Champion AR, Li S, Saum K, Howard E, Simmons W. The effect of crystallinity on the physical properties of UHMWPE. Trans Orthop Res Soc. 1994;19:585.

    Google Scholar 

  24. Chan FW, Bobyn JD, Medley JB, Krygier JJ, Yue S, Tanzer M. Engineering issues and wear performance of metal on metal hip implants. Clin Orthop Relat Res. 1996;333:96–107.

    PubMed  Google Scholar 

  25. Charnley J. Arthroplasty of the hip: a new operation. Lancet 1961;I:1129–1132.

    Google Scholar 

  26. Charnley J. Tissue reaction to the polytetraflouroethyene. Lancet. 1963;II:1379.

    Google Scholar 

  27. Charnley J. Low friction principle. In: Low Friction Arthroplasty of the Hip: Theory and Practice. Berlin, Germany: Springer-Verlag; 1979:3–16.

  28. Charnley J. Personal communication, 1971: Sterilization of Charnley total hip sockets of high density polyethylene. In: Kurtz SM, ed. The UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 2nd ed. Burlington, MA: Academic Press; 2009:39–40.

    Google Scholar 

  29. Charnley J, Halley DK. Rate of wear in total hip replacement. Clin Orthop Relat Res. 1975;112:170–179.

    PubMed  Google Scholar 

  30. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplasty. 1996;11:377–389.

    PubMed  CAS  Google Scholar 

  31. Collier JP, Sutula LC, Currier BH, Currier JH, Wooding RE, Williams IR, Farber KB, Mayor MB. Overview of polyethylene as a bearing material: comparison of sterilization methods. Clin Orthop Relat Res. 1996;333:76–86.

    PubMed  Google Scholar 

  32. Collier MB, Engh CA Jr, Engh GA. Shelf age of the polyethylene tibial component and outcome of unicondylar knee arthroplasty. J Bone Joint Surg Am. 2004;86:763–769.

    PubMed  Google Scholar 

  33. Connelly GM, Rimnac CM, Wright TM, Hertzberg RW, Manson JA. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene. J Orthop Res. 1984;2:119–125.

    PubMed  CAS  Google Scholar 

  34. Costa L, Brach de Prever EM. UHMWPE for Arthroplasty. Turin, Italy: Edizioni Minerva Medica; 2000.

    Google Scholar 

  35. Currier BH, Currier JH, Mayor MB, Lyford KA, Collier JP, Van Citters DW. Evaluation of oxidation and fatigue damage of retrieved crossfire polyethylene acetabular cups. J Bone Joint Surg Am. 2007;89:2023–2029.

    PubMed  Google Scholar 

  36. Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW, Collier JP. In vivo oxidation of gamma-barrier-sterilized ultra-high-molecular-weight polyethylene bearings. J Arthroplasty. 2007;22:721–731.

    PubMed  Google Scholar 

  37. D’Antonio JA, Manley MT, Capello WN, Bierbaum BE, Ramakrishnan R, Naughton M, Sutton K. Five-year experience with Crossfire highly cross-linked polyethylene. Clin Orthop Relat Res. 2005;441:143–150.

    PubMed  Google Scholar 

  38. Digas G, Karrholm J, Thanner J, Herberts P. 5-year experience of highly cross-linked polyethylene in cemented and uncemented sockets: two randomized studies using radiostereometric analysis. Acta Orthop. 2007;78:746–754.

    PubMed  Google Scholar 

  39. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res. 2004;429:6–16.

    PubMed  Google Scholar 

  40. Dorr LD, Hilton KR, Wan Z, Markovich GD, Bloebaum R. Modern metal on metal articulation for total hip replacements. Clin Orthop Relat Res. 1996;333:108–117.

    PubMed  Google Scholar 

  41. Dorr LD, Wan Z, Shahrdar C, Sirianni L, Boutary M, Yun A. Clinical performance of a Durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg Am. 2005;87:1816–1821.

    PubMed  Google Scholar 

  42. Duffy GP, Wannomae KK, Rowell SL, Muratoglu OK. Fracture of a cross-linked polyethylene liner due to impingement. J Arthroplasty. 2009;24:158.e15–19.

    Google Scholar 

  43. Dumbleton JH, D’Antonio JA, Manley MT, Capello WN, Wang A. The basis for a second-generation highly cross-linked UHMWPE. Clin Orthop Relat Res. 2006;453:265–271.

    PubMed  Google Scholar 

  44. Engh CA Jr, Stepniewski AS, Ginn SD, Beykirch SE, Sychterz-Terefenko CJ, Hopper RH Jr, Engh CA. A randomized prospective evaluation of outcomes after total hip arthroplasty using cross-linked marathon and non-cross-linked Enduron polyethylene liners. J Arthroplasty. 2006;21:17–25.

    PubMed  Google Scholar 

  45. Fukui K, Kaneuji A, Sugimori T, Ichiseki T, Kitamura K, Matsumoto T. Wear comparison between a highly cross-linked polyethylene and conventional polyethylene against a zirconia femoral head: minimum 5-year follow-up. J Arthroplasty. 2011;26:45–49.

    PubMed  Google Scholar 

  46. Garcia-Rey E, Garcia-Cimbrelo E, Cruz-Pardos A, Ortega-Chamarro J. New polyethylenes in total hip replacement: a prospective, comparative clinical study of two types of liner. J Bone Joint Surg Br. 2008;90:149–153.

    PubMed  CAS  Google Scholar 

  47. Garino JP. Modern ceramic-on-ceramic total hip systems in the United States: early results. Clin Orthop Relat Res. 2000;379:41–47.

    PubMed  Google Scholar 

  48. Garvin KL, Hartman CW, Mangla J, Murdoch N, Martell JM. Wear analysis in THA utilizing oxidized zirconium and crosslinked polyethylene. Clin Orthop Relat Res. 2009;467:141–145.

    PubMed  Google Scholar 

  49. Geller JA, Malchau H, Bragdon C, Greene M, Harris WH, Freiberg AA. Large diameter femoral heads on highly cross-linked polyethylene: minimum 3-year results. Clin Orthop Relat Res. 2006;447:53–59.

    PubMed  Google Scholar 

  50. Gioe TJ, Sharma A, Tatman P, Mehle S. Do “premium” joint implants add value? Analysis of high cost joint implants in a community registry. Clin Orthop Relat Res. 2011;469:48–54.

    PubMed  Google Scholar 

  51. Glyn-Jones S, Isaac S, Hauptfleisch J, McLardy-Smith P, Murray DW, Gill HS. Does highly cross-linked polyethylene wear less than conventional polyethylene in total hip arthroplasty? A double-blind, randomized, and controlled trial using roentgen stereophotogrammetric analysis. J Arthroplasty. 2008;23:337–343.

    PubMed  Google Scholar 

  52. Glyn-Jones S, McLardy-Smith P, Gill HS, Murray DW. The creep and wear of highly cross-linked polyethylene: a three-year randomised, controlled trial using radiostereometric analysis. J Bone Joint Surg Br. 2008;90:556–561.

    PubMed  CAS  Google Scholar 

  53. Good V, Widding K, Scott M, Jani S. The sensitivity of crosslinked UHMWPE to abrasive wear: hips vs. knees. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  54. Greer K, King R, Chan FW. Effects of raw material, irradiation dose, and irradiation source on crosslinking of UHMWPE. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  55. Griffith MJ, Seidenstein MK, Williams D, Charnley J. Socket wear in Charnley low friction arthroplasty of the hip. Clin Orthop Relat Res. 1978;137:37–47.

    PubMed  Google Scholar 

  56. Grobbelaar CJ, Du Plessis TA, Marais F. The radiation improvment of polyethylene prostheses: a preliminary study. J Bone Joint Surg Br. 1978;60:370–374.

    PubMed  Google Scholar 

  57. Halley D, Glassman A, Crowninshield RD. Recurrent dislocation after revision total hip replacement with a large prosthetic femoral head: a case report. J Bone Joint Surg Am. 2004;86:827–830.

    PubMed  Google Scholar 

  58. Hammerberg EM, Zhinian W, Manish D, Lawrence DD. Wear and range of motion of different femoral head sizes. J Arthroplasty. 2010;25:839–843.

    PubMed  Google Scholar 

  59. Harris WH. The problem is osteolysis. Clin Orthop Relat Res. 1995;311:46–53.

    PubMed  Google Scholar 

  60. Heisel C, Silva M, dela Rosa MA, Schmalzried TP. Short-term in vivo wear of cross-linked polyethylene. J Bone Joint Surg Am. 2004;86:748–751.

    PubMed  Google Scholar 

  61. Heisel C, Silva M, Schmalzried TP. In vivo wear of bilateral total hip replacements: conventional versus crosslinked polyethylene. Arch Orthop Trauma Surg. 2005;125:555–557.

    PubMed  Google Scholar 

  62. Hodrick JT, Severson EP, McAlister DS, Dahl B, Hofmann AA. Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop Relat Res. 2008;466:2806–2812.

    PubMed  Google Scholar 

  63. Hopper RH Jr, Young AM, Orishimo KF, Engh CA Jr. Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners. J Bone Joint Surg Am. 2003;85:464–468.

    PubMed  Google Scholar 

  64. Hopper RH Jr, Young AM, Orishimo KF, McAuley JP. Correlation between early and late wear rates in total hip arthroplasty with application to the performance of marathon cross-linked polyethylene liners. J Arthroplasty. 2003;18:60–67.

    PubMed  Google Scholar 

  65. Ianuzzi A, Kurtz SM. Sterilization of joint replacement materials. In: Revell PA, ed. Joint Replacement Technology. Cambridge, UK: Woodhead Publishing Ltd; 2008:407–430.

    Google Scholar 

  66. Ise K, Kawanabe K, Tamura J, Akiyama H, Goto K, Nakamura T. Clinical results of the wear performance of cross-linked polyethylene in total hip arthroplasty: prospective randomized trial. J Arthroplasty. 2009;24:1216–1220.

    PubMed  Google Scholar 

  67. Jacobs JJ, Shanbhag A, Glant TT, Black J, Galante JO. Wear debris in total joint replacements. J Am Acad Orthop Surg. 1994;2:212–220.

    PubMed  Google Scholar 

  68. Jani S, Scott M. Wear debris generation in joint simulator testing of crosslinked UHMWPE. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  69. Kawate K, Ohmura T, Kawahara I, Tamai K, Ueha T, Takemura K. Differences in highly cross-linked polyethylene wear between zirconia and cobalt-chromium femoral heads in Japanese patients: a prospective, randomized study. J Arthroplasty. 2009;24:1221–1224.

    PubMed  Google Scholar 

  70. Kiely PD, Harty JA, McElwain JP. Hylamer wear rates and shelf life: a clinical correlation. Acta Orthop Belg. 2005;71:429–434.

    PubMed  Google Scholar 

  71. Kim YH, Kim JS, Choi YW, Kwon OR. Intermediate results of simultaneous alumina-on-alumina bearing and alumina-on-highly cross-linked polyethylene bearing total hip arthroplasties. J Arthroplasty. 2009;24:885–891.

    PubMed  Google Scholar 

  72. Kothari M, Bartel DL, Booker JF. Surface geometry of retrieved McKee-Farrar total hip replacements. Clin Orthop Relat Res. 1996;329(Suppl):S141–S147.

    PubMed  Google Scholar 

  73. Krushell RJ, Fingeroth RH, Cushing MC. Early femoral head penetration of a highly crosslinked polyethylene liner vs a conventional polyethlene liner. J Arthroplasty. 2005;20:73–76.

    PubMed  Google Scholar 

  74. Kurtz SM. The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement. New York, NY: Academic Press; 2004.

    Google Scholar 

  75. Kurtz SM. Packaging and sterilization of UHMWPE. In: Kurtz SM, ed. The UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 2nd ed. Burlington, MA: Academic Press; 2009:21–30.

    Google Scholar 

  76. Kurtz SM, ed. The UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. 2nd ed. Burlington, MA: Academic Press; 2009.

    Google Scholar 

  77. Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  78. Kurtz SM, Hozack WJ, Purtill JJ, Marcolongo M, Kraay MJ, Goldberg VM, Sharkey PF, Parvizi J, Rimnac CM, Edidin AA. Significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop Relat Res. 2006;453:47–57.

    PubMed  Google Scholar 

  79. Kurtz SM, Manley M, Wang A, Taylor S, Dumbleton J. Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bull Hosp Jt Dis. 2002-2003;61:17–26.

    Google Scholar 

  80. Kurtz SM, Mazzucco D, Rimnac CM, Schroeder D. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion. Biomaterials. 2006;27:24–34.

    PubMed  CAS  Google Scholar 

  81. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra- high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–1688.

    PubMed  CAS  Google Scholar 

  82. Kurtz SM, Rimnac CM, Hozack WJ, Turner J, Marcolongo M, Goldberg VM, Kraay MJ, Edidin AA. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am. 2005;87:815–823.

    PubMed  Google Scholar 

  83. Lachiewicz PF, Heckman DS, Soileau ES, Mangla J, Martell JM. Femoral head size and wear of highly cross-linked polyethylene at 5 to 8 years. Clin Orthop Relat Res. 2009;467:3290–3296.

    PubMed  Google Scholar 

  84. Laurent MP, Blanchard CR, Yao JQ, Johnson TS, Gilbertson LN, Swarts D, Crowninshield RD. The wear of highly crosslinked UHMWPE in the presence of abrasive particles: hip and knee simulator studies. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  85. Leung SB, Egawa H, Stepniewski A, Beykirch S, Engh CA Jr, Engh CA Sr. Incidence and volume of pelvic osteolysis at early follow-up with highly cross-linked and noncross-linked polyethylene. J Arthroplasty. 2007;22:134–139.

    PubMed  Google Scholar 

  86. Li S, Burstein AH. Ultra-high molecular weight polyethylene: the material and its use in total joint implants. J Bone Joint Surg Am. 1994;76:1080–1090.

    PubMed  CAS  Google Scholar 

  87. Li S, Chang JD, Barrena EG, Furman BD, Wright TM, Salvati E. Nonconsolidated polyethylene particles and oxidation in Charnley acetabular cups. Clin Orthop Relat Res. 1995;319:54–63.

    PubMed  Google Scholar 

  88. MacDonald D, Kurtz SM, Sakona A, Rimnac C. In vivo oxidation, oxidation potential, and mechanical properties of first generation highly crosslinked polyethylenes. Clin Orthop Relat Res. 2010 December 16 [Epub ahead of print].

  89. Mall NA, Nunley RM, Zhu JJ, Maloney WJ, Barrack RL, Clohisy JC. The incidence of acetabular osteolysis in young patients with conventional versus highly crosslinked polyethylene. Clin Orthop Relat Res. 2011;469:372–381.

    PubMed  Google Scholar 

  90. Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH. In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplasty. 2005;20:880–886.

    PubMed  Google Scholar 

  91. Martell JM, Verner JJ, Incavo SJ. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: a randomized prospective trial. J Arthroplasty. 2003;18:55–59.

    PubMed  Google Scholar 

  92. McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB, Chess DG, Charron KD. Wear rate of highly cross-linked polyethylene in total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2009;91:773–782.

    PubMed  Google Scholar 

  93. McGovern TF, Ammeen DJ, Collier JP, Currier BH, Engh GA. Rapid polyethylene failure of unicondylar tibial components sterilized with gamma irradiation in air and implanted after a long shelf life. J Bone Joint Surg Am. 2002;84:901–906.

    PubMed  Google Scholar 

  94. McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg Br. 1966;48:245–259.

    PubMed  CAS  Google Scholar 

  95. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res. 1999;17:157–167.

    PubMed  CAS  Google Scholar 

  96. McKellop HA, Shen FW, Campbell P, Ota T. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra-high molecular weight polyethylene acetabular cups in a hip simulator. J Orthop Res. 1999;17:329–339.

    PubMed  CAS  Google Scholar 

  97. McKnulty D, Swope S. The effect of crosslinking UHMWPE on in-vitro wear rates of fixed and mobile bearing knees. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  98. Medel F, Kurtz SM, Klein G, Levine H, Sharkey P, Austin M, Kraay M, Rimnac CM. Clinical, surface damage and oxidative performance of Poly II tibial inserts after long-term implantation. J Long Term Eff Med Implants. 2008;18:151–165.

    PubMed  Google Scholar 

  99. Minoda Y, Aihara M, Sakawa A, Fukuoka S, Hayakawa K, Tomita M, Umeda N, Ohzono K. Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty. Knee. 2009;16:348–351.

    PubMed  Google Scholar 

  100. Miyanishi K, Hara T, Kaminomachi S, Maekawa M, Iwamoto M, Torisu T. Short-term wear of Japanese highly cross-linked polyethylene in cementless THA. Arch Orthop Trauma Surg. 2008;128:995–1000.

    PubMed  Google Scholar 

  101. Moore KD, Beck PR, Petersen DW, Cuckler JM, Lemons JE, Eberhardt AW. Early failure of a cross-linked polyethylene acetabular liner: a case report. J Bone Joint Surg Am. 2008;90:2499–2504.

    PubMed  Google Scholar 

  102. Mu Z, Tian J, Wu T, Yang J, Pei F. A systematic review of radiological outcomes of highly cross-linked polyethylene versus conventional polyethylene in total hip arthroplasty. Int Orthop. 2009;33:599–604.

    PubMed  Google Scholar 

  103. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. Recipient of the 1999 HAP Paul Award. J Arthroplasty. 2001;16:149–160.

    PubMed  CAS  Google Scholar 

  104. Mutimer J, Devane PA, Adams K, Horne JG. Highly crosslinked polyethylene reduces wear in total hip arthroplasty at 5 years. Clin Orthop Relat Res. 2010;468:3228–3233.

    PubMed  Google Scholar 

  105. Nair PD. Currently practised sterilization methods—some inadvertent consequences. J Biomater Appl. 1995;10:121–135.

    PubMed  CAS  Google Scholar 

  106. Nakahara I, Nakamura N, Nishii T, Miki H, Sakai T, Sugano N. Minimum five-year follow-up wear measurement of longevity highly cross-linked polyethylene cup against cobalt-chromium or zirconia heads. J Arthroplasty. 2010;25:1182–1187.

    PubMed  Google Scholar 

  107. Nizard RS, Sedel L, Christel P, Meunier A, Soudry M, Witvoet J. Ten-year survivorship of cemented ceramic-ceramic total hip prosthesis. Clin Orthop Relat Res. 1992;282:53–63.

    PubMed  Google Scholar 

  108. Olyslaegers C, Defoort K, Simon JP, Vandenberghe L. Wear in conventional and highly cross-linked polyethylene cups: a 5-year follow-up study. J Arthroplasty. 2008;23:489–494.

    PubMed  Google Scholar 

  109. Oonishi H, Clarke IC, Masuda S, Amino H. Study of retrieved acetabular sockets made from high-dose, cross-linked polyethylene. J Arthroplasty. 2001;16:129–133.

    PubMed  CAS  Google Scholar 

  110. Oonishi H, Kim SC, Takao Y, Kyomoto M, Iwamoto M, Ueno M. Wear of highly cross-linked polyethylene acetabular cup in Japan. J Arthroplasty. 2006;21:944–949.

    PubMed  Google Scholar 

  111. Oonishi H, Takayama Y, Tsuji E. Improvement of polyethylene by irradiation in artificial joints. Rad Phys Chem. 1992;39:495–504.

    CAS  Google Scholar 

  112. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25:5515–5522.

    PubMed  CAS  Google Scholar 

  113. Premnath V, Harris WH, Jasty M, Merrill EW. Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. Biomaterials. 1996;17:1741–1753.

    PubMed  CAS  Google Scholar 

  114. Rajadhyaksha AD, Brotea C, Cheung Y, Kuhn C, Ramakrishnan R, Zelicof SB. Five-year comparative study of highly cross-linked (Crossfire) and traditional polyethylene. J Arthroplasty. 2009;24:161–167.

    PubMed  Google Scholar 

  115. Ramani K, Parasnis NC. Process-induced effects in compression molding of ultra-high molecular weight polyethylene (UHMWPE). In: Gsell RA, Stein HL, Ploskonka JJ, eds. Characterization and Properties of Ultra-High Molecular Weight Polyethylene. West Conshohocken, PA: American Society for Testing and Materials; 1998:5–23.

    Google Scholar 

  116. Reeves EA, Barton DC, FitzPatrick DP, Fisher J. Comparison of gas plasma and gamma irradiation in air sterilization on the delamination wear of the ultra-high molecular weight polyethylene used in knee replacements. Proc Inst Mech Eng H. 2000;214:249–255.

    PubMed  CAS  Google Scholar 

  117. Ries MD, Weaver K, Beals N. Safety and efficacy of ethylene oxide sterilized polyethylene in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:159–163.

    PubMed  Google Scholar 

  118. Ries MD, Weaver K, Rose RM, Gunther J, Sauer W, Beals N. Fatigue strength of polyethylene after sterilization by gamma irradiation or ethylene oxide. Clin Orthop Relat Res. 1996;333:87–95.

    PubMed  Google Scholar 

  119. Rimnac CM, Klein RW, Betts F, Wright TM. Post-irradiation aging of ultra-high molecular weight polyethylene. J Bone Joint Surg Am. 1994;76:1052–1056.

    PubMed  CAS  Google Scholar 

  120. Ring PA. Complete replacement arthroplasty of the hip by the ring prosthesis. J Bone Joint Surg Br. 1968;50:720–731.

    PubMed  CAS  Google Scholar 

  121. Rohrl S, Nivbrant B, Mingguo L, Hewitt B. In vivo wear and migration of highly cross-linked polyethylene cups a radiostereometry analysis study. J Arthroplasty. 2005;20:409–413.

    PubMed  Google Scholar 

  122. Rohrl SM, Li MG, Nilsson KG, Nivbrant B. Very low wear of non-remelted highly cross-linked polyethylene cups: an RSA study lasting up to 6 years. Acta Orthop. 2007;78:739–745.

    PubMed  Google Scholar 

  123. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty: the concept of effective joint space. J Bone Joint Surg Am. 1992;74:849–863.

    PubMed  CAS  Google Scholar 

  124. Schmidt MB, Hamilton JV. The effects of calcium stearate on the properties of UHMWPE. Trans Orthop Res Soc. 1996;21:22.

    Google Scholar 

  125. Scott DL, Campbell PA, McClung CD, Schmalzried TP. Factors contributing to rapid wear and osteolysis in hips with modular acetabular bearings made of hylamer. J Arthroplasty. 2000;15:35–46.

    PubMed  CAS  Google Scholar 

  126. Sedel L, Kerboull L, Christel P, Meunier A, Witvoet J. Alumina-on-alumina hip replacement: results and survivorship in young patients. J Bone Joint Surg Br. 1990;72:658–663.

    PubMed  CAS  Google Scholar 

  127. Shia DS, Clohisy JC, Schinsky MF, Martell JM, Maloney WJ. THA with highly cross-linked polyethylene in patients 50 years or younger. Clin Orthop Relat Res. 2009;467:2059–2065.

    PubMed  Google Scholar 

  128. Streicher RM. Ionizing irradiation for sterilization and modification of high molecular weight polyethylenes. Plast Rubber Proc Appl. 1988;10:221–229.

    CAS  Google Scholar 

  129. Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR, Kasprzack DJ, Suprenant VA. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res. 1995;319:28–40.

    PubMed  Google Scholar 

  130. Swarts D, Gsell R, King R, Devanathan D, Wallace S, Lin S, Rohr W. Aging of calcium stearate-free polyethylene. In: Transactions of the 5th World Biomaterials Congress. Mount Laurel, NJ: Society for Biomaterials; 1996:196.

  131. Tower SS, Currier JH, Currier BH, Lyford KA, Van Citters DW, Mayor MB. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am. 2007;89:2212–2217.

    PubMed  Google Scholar 

  132. Triclot P, Grosjean G, El Masri F, Courpied JP, Hamadouche M. A comparison of the penetration rate of two polyethylene acetabular liners of different levels of cross-linking: a prospective randomised trial. J Bone Joint Surg Br. 2007;89:1439–1445.

    PubMed  CAS  Google Scholar 

  133. Wang A, Essner A, Polineni VK, Stark C, Dumbleton JH. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Tribol Int. 1998;31:17–33.

    CAS  Google Scholar 

  134. Wang A, Manley M, Serekian P. Wear and structural fatigue simulation of crosslinked ultra-high molecular weight polyethylene for hip and knee bearing applications. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

  135. Waugh W. John Charnley: The Man and the Hip. London, UK: Springer-Verlag; 1990.

    Google Scholar 

  136. White SE, Paxson RD, Tanner MG, Whiteside LA. Effects of sterilization on wear in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:164–171.

    PubMed  Google Scholar 

  137. Whittaker JP, Charron KD, McCalden RW, Macdonald SJ, Bourne RB. Comparison of steady state femoral head penetration rates between two highly cross-linked polyethylenes in total hip arthroplasty. J Arthroplasty. 2010;25:680–686.

    PubMed  Google Scholar 

  138. Willert HG, Bertram H, Buchhorn GH. Osteolysis in alloarthroplasty of the hip: the role of ultra-high molecular weight polyethylene wear particles. Clin Orthop Relat Res. 1990;258:95–107.

    PubMed  Google Scholar 

  139. Willert HG, Buchhorn GH, Eyerer P. Ultra-high Molecular Weight Polyethlene as Biomaterial in Orthopedic Surgery. Toronto, Canada: Hogrefe & Huber Publishers; 1991.

    Google Scholar 

  140. Williams IR, Mayor MB, Collier JP. The impact of sterilization method on wear in knee arthroplasty. Clin Orthop Relat Res. 1998;356:170–180.

    PubMed  Google Scholar 

  141. Winter M, Griss P, Scheller G, Moser T. Ten- to 14-year results of a ceramic hip prosthesis. Clin Orthop Relat Res. 1992;282:73–80.

    PubMed  Google Scholar 

  142. Wright TM, Bartel DL. The problem of surface damage in polyethylene total knee components. Clin Orthop Relat Res. 1986;205:67–74.

    PubMed  Google Scholar 

  143. Wright TM, Fukubayashi T, Burstein AH. The effect of carbon fiber reinforcement on contact area, contact pressure, and time-dependent deformation in polyethylene tibial components. J Biomed Mater Res. 1981;15:719–730.

    PubMed  CAS  Google Scholar 

  144. Wroblewski BM, Siney PD, Dowson D, Collins SN. Prospective clinical and joint simulator studies of a new total hip arthroplasty using alumina ceramic heads and cross-linked polyethylene cups. J Bone Joint Surg Br. 1996;78:280–285.

    PubMed  CAS  Google Scholar 

  145. Wrona M, Mayor MB, Collier JP, Jensen RE. The correlation between fusion defects and damage in tibial polyethylene bearings. Clin Orthop Relat Res. 1994;299:92–103.

    PubMed  Google Scholar 

  146. Yao JQ, Lu MP, Johnson TS, Gilbertson LN, Swarts D, Blanchard CR, Crowninshield RD. Improved resistance to wear, delamination and posterior loading fatigue damage of electron beam irradiated, melt-annealed, highly crosslinked UHMWPE knee inserts. In: Kurtz SM, Gsell R, Martell J, eds. ASTM STP 1445. Highly Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene For Joint Replacements. West Conshohocken, PA: American Society for Testing and Materials; 2004.

    Google Scholar 

Download references

Acknowledgments

We thank Dominik Alexander, PhD, and our colleagues from the Health group, Exponent, Inc, for assisting with the statistical analysis for this systematic review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Kurtz PhD.

Additional information

The institution of one or more of the authors (SMK) has received funding from the National Institutes of Health (NIAMS) (R01 AR47904); Stryker Orthopaedics, Inc (Mahwah, NJ); Zimmer, Inc (Warsaw, IN); and StelKast (McMurray, PA).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 82 kb)

About this article

Cite this article

Kurtz, S.M., Gawel, H.A. & Patel, J.D. History and Systematic Review of Wear and Osteolysis Outcomes for First-generation Highly Crosslinked Polyethylene. Clin Orthop Relat Res 469, 2262–2277 (2011). https://doi.org/10.1007/s11999-011-1872-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1872-4

Keywords

Navigation