Skip to main content
Log in

Cell-based Meniscal Tissue Engineering: A Case for Synoviocytes

  • Symposium: Clinically Relevant Strategies for Treating Cartilage and Meniscal Pathology
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Avascular meniscal injuries are largely incapable of healing; the most common treatment remains partial meniscectomy despite the risk of subsequent osteoarthritis. Meniscal responses to injury are partially mediated through synovial activity and strategies have been investigated to encourage healing through stimulating or transplanting adjacent synovial lining. However, with their potential for chondrogenesis, synovial fibroblast-like stem cells hold promise for meniscal cartilage tissue engineering.

Questions/purposes

Thus, specific purposes of this review were to (1) examine how the synovial intima and synoviomeniscal junction affect current meniscal treatment modalities; and (2) examine the components of tissue engineering (cells, scaffolds, bioactive agents, and bioreactors) in the specific context of how cells of synovial origin may be used for meniscal healing or regeneration.

Methods

An online bibliographic search through PubMed was performed in March 2010. Studies were subjectively evaluated and reviewed if they addressed the question posed. Fifty-four resources were initially retrieved, which offered information on the chondrogenic potential of synovial-based cells that could prove valuable for meniscal fibrocartilage engineering.

Results

Based on the positive effects of adjoining synovium on meniscal healing as used in some current treatment modalities, the chondrogenic potential of fibroblast-like stem cells of synovial origin make this cell source a promising candidate for cell-based tissue engineering strategies.

Conclusions

The abundance of autologous synovial lining, its ability to regenerate, and the potential of synovial-derived stem cells to produce a wide spectrum of chondral matrix components make it an ideal candidate for future meniscal engineering investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed AM, Burke DL. In vitro measurement of static pressure distribution in synovial joints: Part I. Tibial surface of the knee. J Biomech Eng. 1983;105:216–225.

    Article  PubMed  CAS  Google Scholar 

  2. Andersson-Molina H, Karlsson H, Rockborn P. Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy. 2002;18:183–189.

    Article  PubMed  Google Scholar 

  3. Ando W, Tateishi K, Katakai D, Hart DA, Higuchi C, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng Part A. 2008;14:2041–2049.

    Article  PubMed  CAS  Google Scholar 

  4. Arnoczky SP. Meniscus. In: Woo SLY, Buckwalter JA, eds. Injury and Repair of the Musculoskeletal Soft Tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1988:483–537.

  5. Arnoczky SP. Building a meniscus. Biological considerations Clin Orthop Relat Res. 1999;367(Suppl):S244–S253.

    Article  Google Scholar 

  6. Arnoczky SP, DiCarlo EF, O’Brien SJ, Warren RF. Cellular repopulation of deep-frozen meniscal autografts: an experimental study in the dog. Arthroscopy. 1992;8:428–436.

    Article  PubMed  CAS  Google Scholar 

  7. Arnoczky SP, Warren RF. The microvasculature of the meniscus and its response to injury: an experimental study in the dog. Am J Sports Med. 1983;11:131–141.

    Article  PubMed  CAS  Google Scholar 

  8. Arnoczky SP, Warren RF, McDevitt CA. Meniscal replacement using a cryopreserved allograft: an experimental study in the dog. Clin Orthop Relat Res. 1990;252:121–128.

    PubMed  Google Scholar 

  9. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. J Bone Joint Surg Am. 1988;70:1209–1217.

    PubMed  CAS  Google Scholar 

  10. Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65:395–413.

    Article  PubMed  CAS  Google Scholar 

  11. Biedert RM. Treatment of intrasubstance meniscal lesions: a randomized prospective study of four different methods. Knee Surg Sports Traumatol Arthrosc. 2000;8:104–108.

    Article  PubMed  CAS  Google Scholar 

  12. Bilgen B, Ren Y, Pei M, Aaron RK, Ciombor DM. CD 14-negative isolation enhances chondrogenesis in synovial fibroblasts. Tissue Eng Part A. 2009;15:3261–3270.

    Article  PubMed  CAS  Google Scholar 

  13. Burke DI, Ahmed AM. A biomechanical study of partial and total medial meniscectomy of the knee. Trans Orthop Res Soc. 1978;3:91.

    Google Scholar 

  14. Canham W, Stanish W. A study of the biological behavior of the meniscus as a transplant in the medial compartment of a dog’s knee. Am J Sports Med. 1986;14:376–379.

    Article  PubMed  CAS  Google Scholar 

  15. Caubad HE, Rodkey WG, Fitzwater JE. Medial meniscus repairs. An experimental and morphologic study. Am J Sports Med. 1981;9:129–134.

    Article  Google Scholar 

  16. Cheung HS. Distribution of type I, II, II and V in the pepsin solubilized collagen in bovine menisci. Connect Tissue Res. 1987;16:343–356.

    Article  PubMed  CAS  Google Scholar 

  17. Clark JM, Norman AG, Kaab MJ, Notzli HP. The surface contour of articular cartilage in an intact loaded joint. J Anat. 1999;195:45–46.

    Article  PubMed  Google Scholar 

  18. Cook JL, Fox DB. A novel bioabsorbable conduit augments healing of avascular meniscal tears in a dog model. Am J Sports Med. 2007;35:1877–1887.

    Article  PubMed  Google Scholar 

  19. Covall DJ, Wasilewski SA. Roentgenographic changes after arthroscopic meniscectomy: five year follow-up in patients more than 45 years old. Arthroscopy. 1992;8:242–246.

    Article  PubMed  CAS  Google Scholar 

  20. Cox JS, Nye CE, Schaefer WW. The degenerative effects of partial and total resection of the medial meniscus in dogs’ knees. Clin Orthop Relat Res. 1975;109:178–183.

    Article  PubMed  Google Scholar 

  21. Davies DV. The structure and functions of the synovial membrane. BMJ. 1950;1:92–95.

    Article  PubMed  CAS  Google Scholar 

  22. De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 2004;50:142–150.

    Article  PubMed  Google Scholar 

  23. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–1942.

    Article  PubMed  Google Scholar 

  24. DeYoung D, Flo GL, Tvedten H. Experimental medial meniscectomy in dogs undergoing cranial cruciate ligament repair. J Am Anim Hosp. 1980;16:639–645.

    Google Scholar 

  25. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. Function, biochemistry, and metabolism of the normal synovial membrane of the temporomandibular joint: a review of the literature. J Oral Maxillofac Surg. 1996;54:95–100.

    Article  PubMed  CAS  Google Scholar 

  26. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. Structure of the normal synovial membrane of the temporomandibular joint: a review of the literature. J Oral Maxillofac Surg. 1996;54:332–338.

    Article  PubMed  CAS  Google Scholar 

  27. Dowthwaite GP, Ward AC, Flannely J, Suswillo RF, Flannery CR, Archer CW, Pisillides AA. The effect of mechanical strain on hyaluronan metabolism in embryonic fibrocartilage cells. Matrix Biol. 1999;18:523–532.

    Article  PubMed  CAS  Google Scholar 

  28. Fan J, Gong Y, Ren L, Varshney RR, Cai D, Wang DA. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomaterials. 2010;6:1178–1185.

    Article  CAS  Google Scholar 

  29. Fickert S, Fiedler J, Brenner RE. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage. 2003;11:790–800.

    Article  PubMed  CAS  Google Scholar 

  30. Forman SK, Oz MC, Lontz JF, Treat MR, Forman TA, Kiernan HA. Laser-assisted fibrin clot soldering of human menisci. Clin Orthop Relat Res. 1995;310:37–41.

    PubMed  Google Scholar 

  31. Fox DB, Cook JL, Arnoczky SP, Tomlinson JL, Kuroki K, Kreeger JM, Malaviya P. Fibrochondrogenesis of free intraarticular small intestinal submucosa scaffolds. Tissue Eng. 2004;10:129–137.

    Article  PubMed  CAS  Google Scholar 

  32. Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng. 2006;12:1627–1637.

    Article  Google Scholar 

  33. Fox DB, Luther JK, Whitener D. An in vitro model to assess mechanisms and efficacy of a cellular conduit for treatment of avascular meniscal injuries. In Vitro Cell Dev Biol Anim. 2008;44:185–188.

    Article  PubMed  Google Scholar 

  34. Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Science. 2010;88:326–332.

    Article  CAS  Google Scholar 

  35. Gershuni DH, Skyhar MJ, Danzig LA, Camp J, Hargens AR, Akeson WH. Experimental models to promote healing of tears in the avascular segment of canine menisci. J Bone Joint Surg Am. 1989;71:1363–1370.

    PubMed  CAS  Google Scholar 

  36. Goulding NJ, Dixey J, Morand EF, Dodds RA, Wilkinson LS, Pitsillides AA, Edwards JC. Differential distribution of annexins-I, -II, -IV, and -VI in synovium. Ann Rheum Dis. 1995;54:841–845.

    Article  PubMed  CAS  Google Scholar 

  37. Heatley FW. The meniscus—can it be repaired? An experimental investigation in rabbits. J Bone Joint Surg Br. 1980;62:397–402.

    PubMed  CAS  Google Scholar 

  38. Hede A, Larsen E. Sandberg H. Partial versus total meniscectomy: a prospective, randomized study with long-term follow-up. J Bone Joint Surg Br. 1992;74:118–121.

    PubMed  CAS  Google Scholar 

  39. Hede A, Larsen E. Sandberg H. The long term outcome of open total and partial meniscectomy related to the quantity and site of the meniscus removed. Int Orthop. 1992;16:122–125.

    Article  PubMed  CAS  Google Scholar 

  40. Henning CE, Lynch MA, Clark JR. Vascularity for healing of meniscus repairs. Arthroscopy. 1987;3:13–18.

    Article  PubMed  CAS  Google Scholar 

  41. Henning CE, Lynch MA, Yearout KM. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res. 1990;252:64–72.

    PubMed  Google Scholar 

  42. Henning CE, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Use of the fascia sheath coverage and exogenous fibrin clot in the treatment of complex meniscal tears. Am J Sports Med. 1991;19:626–631.

    Article  PubMed  CAS  Google Scholar 

  43. Hoben GM, Athanasiou KA. Meniscal repair with fibrocartilage engineering. Sports Med Arthrosc. 2006;14:129–137.

    Article  PubMed  Google Scholar 

  44. Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, Murakami T, Kobayashi E. Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defects. Stem Cells. 2009;27:878–887.

    Article  PubMed  CAS  Google Scholar 

  45. Jisuiki J, Ochi M, Ikuta Y. Meniscal repair enhanced by an interpositional free synovial autograft: an experimental study in rabbits. Arthroscopy. 1994;10:659–666.

    Article  Google Scholar 

  46. Jo CH, Ahn HJ, Kim HJ, Seong SC, Lee MC. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy. 2007;9:316–327.

    Article  PubMed  CAS  Google Scholar 

  47. Kim JM, Moon MS. Effect of synovectomy upon regeneration of meniscus in rabbits. Clin Orthop Relat Res. 1979;141:287–294.

    PubMed  Google Scholar 

  48. Kimura M, Shirakura K, Hasegawa A, Kobuna Y, Niijima M. Second look arthroscopy after meniscal repair. Factors affecting the healing rate. Clin Orthop Relat Res. 1995;314:185–191.

    PubMed  Google Scholar 

  49. King D. The function of semilunar cartilages. J Bone Joint Surg. 1936;18:1069–1076.

    Google Scholar 

  50. Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, Von Der Mark K, Sekiya I. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007;25:689–696.

    Article  PubMed  CAS  Google Scholar 

  51. Koga H, Muneta T, Nadase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333:207–215.

    Article  PubMed  Google Scholar 

  52. Kouri T, Heino J, Kroneld U. Surface membrane glycoproteins of macrophage-like synovial cells from rheumatoid and control patients. Scand J Immunol. 1984;19:359–364.

    Article  PubMed  CAS  Google Scholar 

  53. Kurth T, Hedbom E, Shintani N, Sugimoto M, Chen FH, Haspl M, Martinovic S, Hunziker EB. Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthritis Cartilage. 2007;15:1178–1189.

    Article  PubMed  CAS  Google Scholar 

  54. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64:883–888.

    PubMed  CAS  Google Scholar 

  55. Linck G, Porte A. B-cells of the synovial membrane. III. Relationship with the specific collagenous structure of the intimal interstitium in the mouse. Cell Tissue Res. 1981;218:117–121.

    Article  PubMed  CAS  Google Scholar 

  56. Marsano A, Millward-Sadler SJ, Slater DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage. 2007;15:48–58.

    Article  PubMed  CAS  Google Scholar 

  57. McAndrews PT, Arnoczky SP. Meniscal repair enhancement techniques. Clin Sports Med. 1996;15:499–510.

    PubMed  CAS  Google Scholar 

  58. McCarthy EF, Dorfman HD. Primary synovial chondromatosis. An ultrastructural study. Clin Orthop Relat Res. 1982;168:178–186.

    PubMed  Google Scholar 

  59. McNicholas MJ, Rowley DI, McGurty D, Adalberth T, Abdon P, Lindstrand A, Lohmander LS. Total meniscectomy in adolescence: a thirty year follow up. J Bone Joint Surg Br. 2000;82:217–221.

    Article  PubMed  CAS  Google Scholar 

  60. Mizuno K, Muneta T, Morito T, Ichinose S, Koga H, Nimura A, Mochizuki T, Sekiya I. Exogenous synovial stem cells adhere to defect of meniscus and differentiate into cartilage cells. J Med Dent Sci. 2008;55:101–111.

    PubMed  Google Scholar 

  61. Nakano T, Dodd CM, Scott PG. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J Orthop Res. 1997;15:213–220.

    Article  PubMed  CAS  Google Scholar 

  62. Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B. Chondroprogenitor cells of synovial tissue. Arthritis Rheum. 1999;42:2631–2637.

    Article  PubMed  CAS  Google Scholar 

  63. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum. Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum. 2008;58:501–510.

    Article  PubMed  CAS  Google Scholar 

  64. Ochi M, Mochizuki Y, Deie M, Ikuta Y. Augmented meniscal healing with free synovial autografts: an organ culture model. Arch Orthop Trauma Surg. 1996;115:123–126.

    Article  PubMed  CAS  Google Scholar 

  65. Ostergaard M, Ejbjerg B, Stoltenberg M, Gideon P, Volck B, Skov K, Jensen CH, Lorenzen I. Quantitative magnetic resonance imaging as marker of synovial membrane regeneration and recurrence of synovitis after arthroscopic knee joint synovectomy: a one year follow up study. Ann Rheum Dis. 2001;60:233–236.

    Article  PubMed  CAS  Google Scholar 

  66. Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultures in three-dimensional alginate hydrogel. Osteoarthritis Cartilage. 2005;13:527–536.

    Article  PubMed  CAS  Google Scholar 

  67. Pei M, He F, Boyuce CM, Kish VL. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage. 2009;17:714–722.

    Article  PubMed  CAS  Google Scholar 

  68. Pei M, He F, Chen D, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis. Differentiation. 2008;76:1044–1056.

    Article  PubMed  CAS  Google Scholar 

  69. Praemer A, Furner S, Rice DP. Musculoskeletal Conditions in the United States. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1999.

    Google Scholar 

  70. Ritchie JR, Miller MD, Bents RT, Smith DK. Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med. 1998;26:278–284.

    PubMed  CAS  Google Scholar 

  71. Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF. Histological analysis of human meniscal allografts: a preliminary report. J Bone Joint Surg Am. 2000;82:1071–1082.

    PubMed  Google Scholar 

  72. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52:2521–2529.

    Article  PubMed  Google Scholar 

  73. Sakao K, Takahashi KA, Arai Y, Inoue A, Tonomura H, Saito M, Yamamoto T, Kanamura N, Imnishi J, Mazda O, Kubo T. Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis Cartilage. 2008;16:805–814.

    Article  PubMed  CAS  Google Scholar 

  74. Sakimura K, Matsumoto T, Miyamoto C, Osaki M, Shindo H. Effects of insulin-like growth factor I on transforming growth factor β1 induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold. Cells Tissue Organs. 2006;183:55–61.

    Article  CAS  Google Scholar 

  75. Schimmer RD, Brulhart KB, Duff C, Ginz W. Arthroscopic partial meniscectomy: a 12 year follow-up and two-step evaluation of the long-term course. Arthroscopy. 1998;14:136–142.

    Article  PubMed  CAS  Google Scholar 

  76. Sethi PM, Cooper A, Joki P. Technical tips in orthopaedics: meniscal repair with use of an in situ fibrin clot. Arthroscopy. 2003;19:E44.

    PubMed  Google Scholar 

  77. Sgaglione NA, Steadman JR, Shaffer B, Miller MD, Fu FH. Current concepts in meniscus surgery: resection to replacement. Arthrosocopy. 2003;19(Suppl 1):161–188.

    Article  Google Scholar 

  78. Sherman MF, Warren RF, Marshall JL, Savatsky GJ. A clinical and radiographical analysis of 127 anterior cruciate insufficient knees. Clin Orthop Relat Res. 1988;227:229–237.

    PubMed  CAS  Google Scholar 

  79. Shirakura K, Niijima M, Kobuna Y, Kizuki S. Free synovium promotes meniscal healing. Synovium muscle and synthetic mesh compared in dogs. Acta Orthop Scand. 1997;68:51–54.

    Article  PubMed  CAS  Google Scholar 

  80. Shirasawa A, Sekiya I, Sakaguchi Y, Yagashita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97:84–97.

    Article  PubMed  CAS  Google Scholar 

  81. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. J Bone Joint Surg Am. 1986;68:71–79.

    PubMed  CAS  Google Scholar 

  82. Swann DA, Silver FH, Slayter HS, Stafford W, Shore E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem J. 1985;225:195–201.

    PubMed  CAS  Google Scholar 

  83. Swann DA, Slayter HS, Silver FH. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem. 1981;256:5921–5925.

    PubMed  CAS  Google Scholar 

  84. Tan Y, Zhang Y, Pei M. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa—a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A. 16;1:67–79.

  85. Tateishi K, Ando W, Higuchi C, Hart DA, Hashimoto J, Nakata K, Yoshikawa H, Nakamura N. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant. 2008;17:549–557.

    Article  PubMed  CAS  Google Scholar 

  86. Tateishi K, Ando W, Yonetani Y, Nakata K, Hashimoto J, Higuchi C, Tanaka Y, Yoshikawa H, Nakamura N. Meniscal repair using scaffold-free 3D synthetic tissue (3DST) derived from synovium. Trans Orthop Res Soc. 2007;32:781.

    Google Scholar 

  87. Tateishi K, Higuchi C, Ando W, Nakata K, Hashimoto J, Hart DA, Yoshikawa H, Nakamura N. The immunosuppressant FK506 promotes development of the chondrogenic phenotype in human synovial stromal cells via modulation of the Smad signaling pathway. Osteoarthritis Cartilage. 2007;15:709–718.

    Article  PubMed  CAS  Google Scholar 

  88. Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J. Results of rasping of meniscal tears and without anterior cruciate ligament injury as evaluated by second-look arthroscopy. Arthroscopy. 2003;19:463–469.

    Article  PubMed  Google Scholar 

  89. van Trommel MF, Simonian PT, Potter HG, Wickiewicz TL. Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy. 1998;14:360–365.

    Article  PubMed  Google Scholar 

  90. Vandenabeele F, De Bari C, Moreels M, Lambrichts I, Dell’Accio F, Lippens PL, Luyten FP. Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Arch Histol Cytol. 2003;66:145–153.

    Article  PubMed  CAS  Google Scholar 

  91. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5:157–161.

    Article  PubMed  CAS  Google Scholar 

  92. Webber RJ, York JL, Vanderschilden JL, Hough AJ. An organ culture model for assaying wound repair of the fibrocartilaginous knee joint meniscus. Am J Sports Med. 1989;17:393–400.

    Article  PubMed  CAS  Google Scholar 

  93. Xue C, Takahashi M, Hasunuma T, Aona H, Yamamoto K, Yoshino S, Sumida T, Nishioka K. Characterisation of fibroblast-like cells in pannus lesions of patients with rheumatoid arthritis sharing properties of fibroblasts and chondrocytes. Ann Rheum Dis. 1997;56:262–267.

    Article  PubMed  CAS  Google Scholar 

  94. Yokoyama A, Sekiya I, Miyazaki K, Ichinose S, Hata Y, Muneta T. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res. 2005;322:289–298.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–462.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang Z, Arnold JA. Trephination and suturing of avascular meniscal tears: a clinical study of the trephination procedure. Arthroscopy. 1996;12:726–731.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang Z, Arnold JA, Williams T, McCann B. Repairs by trephination and suturing of longitudinal injuries in the avascular area of the meniscus in goats. Am J Sports Med. 1995;23:35–41.

    Article  PubMed  CAS  Google Scholar 

  98. Zimny ML, Albright DJ, Dabezies E. Mechanoreceptors in the human medial meniscus. Acta Anat (Basel). 1988;133:35–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek B. Fox DVM, PhD, Diplomate ACVS.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

This work was performed at the University of Missouri’s Comparative Orthopaedic Laboratory.

About this article

Cite this article

Fox, D.B., Warnock, J.J. Cell-based Meniscal Tissue Engineering: A Case for Synoviocytes. Clin Orthop Relat Res 469, 2806–2816 (2011). https://doi.org/10.1007/s11999-011-1824-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1824-z

Keywords

Navigation