Skip to main content
Log in

In Vivo Kinematics after a Cruciate-substituting TKA

  • Clinical Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Patterns of motion in the native knee show substantial variability. Guided motion prosthetic designs offer stability but may limit natural variability. To assess these limits, we therefore determined the in vivo kinematic patterns for patients having a cruciate-substituting TKA of one design and determined the intersurgeon variability associated with a guided-motion prosthetic design. Three-dimensional femorotibial contact positions were evaluated for 86 TKAs in 80 subjects from three different surgeons using fluoroscopy during a weightbearing deep knee bend. The average posterior femoral rollback of the medial and lateral condyles for all TKAs from full extension to maximum flexion was −14.0 mm and −23.0 mm, respectively. The average axial tibiofemoral rotation from full extension to maximum flexion for all TKAs was 10.8°. The average weightbearing range of motion (ROM) was 109º (range, 60º–150º; standard deviation, 18.7º). Overall, the TKA showed axial rotation patterns similar to those of the normal knee, although less in magnitude. Surgeon-to-surgeon comparison revealed dissimilarities, showing the surgical technique and soft tissue handling influence kinematics in a guided-motion prosthetic design.

Level of Evidence: Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andriacchi TP. Functional analysis of pre and post-knee surgery: total knee arthroplasty and ACL reconstruction. J Biomech Eng. 1993;115:575–581.

    Article  CAS  PubMed  Google Scholar 

  2. Banks SA, Markovich GD, Hodge WA. In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty. 1997;12:297–304.

    Article  CAS  PubMed  Google Scholar 

  3. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84:50–53.

    Article  CAS  PubMed  Google Scholar 

  4. Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Langer T. In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate-retaining total knee arthroplasty. J Arthroplasty. 2002;17:1040–1048.

    Article  PubMed  Google Scholar 

  5. Blunn GW, Walker PS, Joshi A, Hardinge K. The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop Relat Res. 1991;273:253–260.

    PubMed  Google Scholar 

  6. Bull AM, Kessler O, Alam M, Amis AA. Changes in knee kinematics reflect the articular geometry after arthroplasty. Clin Orthop Relat Res. 2008;466:2491–2499.

    Article  PubMed  Google Scholar 

  7. D’Lima DD, Steklov N, Fergly BJ, Banks SA, Colwell CW Jr. In vivo contact stresses during activities of daily living after knee arthroplasty. J Orthop Res. 2008;26:1549–1555.

    Article  PubMed  Google Scholar 

  8. Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356:47–57.

    Article  PubMed  Google Scholar 

  9. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2003;416:37–57.

    Article  PubMed  Google Scholar 

  10. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res. 2004;428:180–189.

    Article  PubMed  Google Scholar 

  11. Dennis DA, Komistek RD, Scuderi GR, Zingde SM. Factors affecting flexion after total knee arthroplasty. Clin Orthop Relat Res. 2007;464:53–60.

    PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN. Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions. J Arthroplasty. 1998;13:748–752.

    Article  CAS  PubMed  Google Scholar 

  13. Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB. Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg Br. 2001;83:33–39.

    Article  CAS  PubMed  Google Scholar 

  14. Dorr LD. Contrary view: wear is not an issue. Clin Orthop Relat Res. 2002;404:96–99.

    Article  PubMed  Google Scholar 

  15. Draganich LF, Andriacchi TP, Andersson GB. Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res. 1987;5:539–547.

    Article  CAS  PubMed  Google Scholar 

  16. Feng EL, Stulberg SD, Wixson RL. Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces. Clin Orthop Relat Res. 1994;299:60–71.

    PubMed  Google Scholar 

  17. Fregly BJ, Sawyer WG, Harman MK, Banks SA. Computational wear prediction of a total knee replacement from in vivo kinematics. J Biomech. 2005;38:305–314.

    Article  PubMed  Google Scholar 

  18. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–1198.

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh HH, Walker PS. Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am. 1976;58:87–93.

    CAS  PubMed  Google Scholar 

  20. Insall JN, Hood RW, Flawn LB, Sullivan DJ. The total condylar knee prosthesis in gonarthrosis: a five to nine-year follow-up of the first one hundred consecutive replacements. J Bone Joint Surg Am. 1983;65:619–628.

    CAS  PubMed  Google Scholar 

  21. Insall JN, Scuderi GR, Komistek RD, Math K, Dennis DA, Anderson DT. Correlation between condylar lift-off and femoral component alignment. Clin Orthop Relat Res. 2002;403:143–152.

    Article  PubMed  Google Scholar 

  22. Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–1195.

    Article  CAS  PubMed  Google Scholar 

  23. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee: a study of weight bearing and non-weight bearing knee kinematics using `interventional’ MRI. J Biomech. 2005;38:269–276.

    Article  CAS  PubMed  Google Scholar 

  24. Komistek RD, Dennis DA. Fluoroscopic Analysis of Total Knee Replacement. Surgery of the Knee. Vol 2, Ed 3. New York, NY: Churchill Livingstone; 2001:1695.

  25. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  26. Komistek RD, Mahfouz MR, Bertin KC, Rosenberg A, Kennedy W. In vivo determination of total knee arthroplasty kinematics: a multicenter analysis of an asymmetrical posterior cruciate retaining total knee arthroplasty. J Arthroplasty. 2008;23:41–50.

    Article  PubMed  Google Scholar 

  27. Kurosawa H, Walker PS, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. J Biomech. 1985;18:487–499.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis P, Rorabeck CH, Bourne RB, Devane P. Posteromedial tibial polyethylene failure in total knee replacements. Clin Orthop Relat Res. 1994;299:11–17.

    PubMed  Google Scholar 

  29. Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–434.

    Article  PubMed  Google Scholar 

  30. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging. 2003;22:1561–1574.

    Article  PubMed  Google Scholar 

  31. Markolf KL, Finerman GM, Amstutz HC. In vitro measurements of knee stability after bicondylar replacement. J Bone Joint Surg Am. 1979;61:547–557.

    CAS  PubMed  Google Scholar 

  32. Massin P, Gournay A. Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty. 2006;21:889–896.

    Article  PubMed  Google Scholar 

  33. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function? Clin Orthop Relat Res. 2005;431:157–165.

    Article  PubMed  Google Scholar 

  34. Stiehl JB, Dennis DA, Komistek RD, Crane HS. In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplasty. 1999;14:293–299.

    Article  CAS  PubMed  Google Scholar 

  35. Stiehl JB, Dennis DA, Komistek RD, Keblish PA. In vivo kinematic analysis of a mobile bearing total knee prosthesis. Clin Orthop Relat Res. 1997;345:60–66.

    Article  PubMed  Google Scholar 

  36. Stiehl JB, Komistek RD, Dennis DA. Detrimental kinematics of a flat on flat total condylar knee arthroplasty. Clin Orthop Relat Res. 1999;365:139–148.

    Article  PubMed  Google Scholar 

  37. Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg Br. 1995;77:884–889.

    CAS  PubMed  Google Scholar 

  38. Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br. 2005;87:646–655.

    Article  CAS  PubMed  Google Scholar 

  39. Victor J, Bellemans J. Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Relat Res. 2006;452:53–58.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Victor MD.

Additional information

One or more of the authors (JV, JB, RDK) have received funding of Smith and Nephew, Memphis, TN.

Each author certifies that his or her institution has approved the reporting of these cases, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participating in the study was obtained.

This work was performed at AZ Sint-Lucas, Brugge, Belgium; UZ Leuven, Leuven, Belgium; and Knoxville Orthopaedic Clinic, Knoxville, TN, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 15646 kb)

Supplementary material 2 (AVI 11686 kb)

About this article

Cite this article

Victor, J., Mueller, J.K.P., Komistek, R.D. et al. In Vivo Kinematics after a Cruciate-substituting TKA. Clin Orthop Relat Res 468, 807–814 (2010). https://doi.org/10.1007/s11999-009-1072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-1072-7

Keywords

Navigation