Skip to main content
Log in

Inhibitors for prolonging corrosion protection of Mg-rich primer on Al alloy 2024-T3

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This research investigated the possibility of adding inhibitors into magnesium-rich primer (MgRP) to prolong the corrosion protection time of MgRP on Al alloy 2024-T3. Three inhibitors: sodium benzoate (SB), sodium dodecylbenzenesulfonate (SDBS), and 8-hydroxyquinoline (HQ), were tested and added into MgRPs separately. Potentiodynamic scans on pellet electrodes confirmed that the inhibitors reduced Mg corrosion rate. The coating systems with and without inhibitors were compared through electrochemical tests, hydrogen volume measurement, accelerated weathering tests, and adhesion tests. It was observed that the addition of SB, SDBS, and HQ into MgRPs could prolong cathodic protection time and improved barrier properties of MgRPs, without compromising adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bierwagen, G, Brown, R, Battocchi, D, Hayes, S, Prog. Org. Coat., 67 48–61 (2010)

    Article  Google Scholar 

  2. Nanna, ME, Bierwagen, GP, J. Coat. Technol. Res., 1 69–80 (2004)

    Article  Google Scholar 

  3. Bierwagen, G, Battocchi, D, Simões, A, Stamness, A, Tallman, D, Prog. Org. Coat., 59 172–178 (2007)

    Article  Google Scholar 

  4. Bierwagen, GR, Brown, DB, Hayes S, “Observations on the Testing of Mg-Rich Primers for the Totally Chromate-Free Corrosion Protection of Aerospace Alloys.” In: Dep. Def. Corros. Conf. Washington DC, 2009

  5. King, AD, Kannan, B, Scully, JR, Corrosion, 70 536–557 (2014)

    Article  Google Scholar 

  6. Richardson, AS, Reflections. AkzoNobel Aerospace Coatings, Waukegan, IL (2012)

    Google Scholar 

  7. Pianoforte, K, Coat. World, May, 24–27 (2015)

  8. Abbott, WH, The Long Term Degradation of Paint Systems: Effects of Environmental Severity and Acceleration Factors. A Summary of 7 Year Results. Greyden Press, Columbus, OH (in Press)

  9. Battocchi, D, Simões, AM, Tallman, DE, Bierwagen, GP, Corros. Sci., 48 1292–1306 (2006)

    Article  Google Scholar 

  10. Simões, AM, Battocchi, D, Tallman, DE, Bierwagen, GP, Corros. Sci., 49 3838–3849 (2007)

    Article  Google Scholar 

  11. Maier, B, Frankel, GS, Corrosion, 67 055001–1–055001–15 (2011)

    Article  Google Scholar 

  12. Simões, A, Battocchi, D, Tallman, D, Bierwagen, G, Prog. Org. Coat., 63 260–266 (2008)

    Article  Google Scholar 

  13. King, AD, Kannan, B, Scully, JR, Corrosion, 70 512–535 (2014)

    Article  Google Scholar 

  14. Lu, X, Zuo, Y, Zhao, X, Tang, Y, Electrochim. Acta, 93 53–64 (2013)

    Article  Google Scholar 

  15. Shen, S, Zuo, Y, Zhao, X, Corros. Sci., 76 275–283 (2013)

    Article  Google Scholar 

  16. Shen, S, Zuo, Y, Corros. Sci., 87 167–178 (2014)

    Article  Google Scholar 

  17. Wang, Y, Zhao, X, Lu, X, Acta Phys.-Chim. Sin., 28 407–413 (2012)

    Google Scholar 

  18. Gao, H, Li, Q, Dai, Y, Luo, F, Zhang, HX, Corros. Sci., 52 1603–1609 (2010)

    Article  Google Scholar 

  19. Li, LJ, Yao, ZM, Lei, JL, Xu, H, Zhang, ST, Pan, FS, Acta Phys. Chim. Sin., 25 1332–1336 (2009)

    Google Scholar 

  20. Lei, J, Li, L, and Pan, F, “Environmental Friendly Corrosion Inhibitors for Magnesium Alloys.” In: Czerwinski, F (ed.) Magnesium Alloys - Corrosion and Surface Treatments, pp. 47–64. Intech Open Access Publisher, Rijeka (2011)

    Google Scholar 

  21. Rosliza, R, Wan, WB, “Nik, and H.B. Senin.” Mater. Chem. Phys., 107 281–288 (2008)

    Article  Google Scholar 

  22. Lin, J, Upadhyay, V, Qi, X, Battocchi, D, Bierwagen, GP, Corrosion, 72 377–383 (2016)

    Article  Google Scholar 

  23. Frankel, GS, Samaniego, A, Birbilis, N, Corros. Sci., 70 104–111 (2013)

    Article  Google Scholar 

  24. King, AD, Birbilis, N, Scully, JR, Electrochim. Acta, 121 394–406 (2014)

    Article  Google Scholar 

  25. Raspini, IA, Corrosion, 49 821–828 (1993)

    Article  Google Scholar 

  26. Galio, AF, Lamaka, SV, Zheludkevich, ML, Dick, LFP, Miller, IL, Ferreira, MGS, Surf. Coat. Technol., 204 1479–1486 (2010)

    Article  Google Scholar 

  27. Amirudin, A, Amirudin, DTA, Thierry, D, Prog. Org. Coat., 26 1–28 (1995)

    Article  Google Scholar 

  28. Merten, BJE, Battocchi, D, Bierwagen, GP, Prog. Org. Coat., 78 446–454 (2015)

    Article  Google Scholar 

  29. Bierwagen, G, Tallman, D, Li, J, He, L, Jeffcoate, C, Prog. Org. Coat., 46 148–157 (2003)

    Google Scholar 

Download references

Acknowledgment

The authors would like to gratefully acknowledge AkzoNobel and NDSU Center for Surface Protection for the funding of this research. Also, the authors are grateful to Dr. Nicholas Wilson for his help in the selection and sourcing of inhibitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junren Lin.

Appendix

Appendix

The moles of hydrogen generated from MgRP (\(n_{{{\text{H}}_{2} }}\)) can be calculated using the ideal gas law. The moles of Mg consumed (\(n_{\text{Mg}}\)) can be calculated using equation (1):

$$n_{\text{Mg}} = n_{{{\text{H}}_{2} }} = \frac{{pV_{{{\text{H}}_{2} }} }}{\text{RT}}$$
(1)

where \(p\) is the atmospheric pressure, \(V_{{{\text{H}}_{2} }}\) is the volume of H2 collected, R is the ideal gas constant (0.0826 L atm mol−1 K−1), and T is the temperature.

Total moles of Mg in an MgRP (\(N_{\text{Mg}}\)) can be calculated using equation (2):

$$N_{\text{Mg}} = \frac{{{\text{Mass}}_{\text{Mg}} }}{{M_{\text{Mg}} }} = \frac{{{\text{PVC}} \times T \times A \times D_{\text{Mg}} }}{{M_{\text{Mg}} }}$$
(2)

where \({\text{Mass}}_{\text{Mg}}\) is the total mass of Mg pigments in a MgRP, \(M_{\text{Mg}}\) is the molar mass of Mg (24 g/mol), PVC is the pigment volume concentration of the MgRP, T is the thickness of the MgRP film, A is the exposed area of the MgRP, and \(D_{\text{Mg}}\) is the density of Mg pigments (1.738 g/cm3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Battocchi, D. & Bierwagen, G.P. Inhibitors for prolonging corrosion protection of Mg-rich primer on Al alloy 2024-T3. J Coat Technol Res 14, 497–504 (2017). https://doi.org/10.1007/s11998-016-9875-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9875-4

Keywords

Navigation