Skip to main content
Log in

Effects of NCO:OH ratio and HEMA on the physicochemical properties of photocurable poly(ester-urethane)methacrylates

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A series of UV-curable isophorone diisocyanate-based poly(ester-urethane)methacrylate (IPEUMA) oligomers were synthesized by a two-step polymerization process. The amount of isophorone diisocyanate was varied during the synthesis. The effects of NCO:OH ratio and HEMA on the structural and physicochemical properties of UV-cured IPEUMAs were investigated. As the NCO:OH ratio increased, the tensile strength and thermal stability increased, whereas the elongation and hydrolytic degradation of the film decreased. The higher strength and thermal stability for higher NCO:OH ratio may be due to the increase in intermolecular hydrogen bonding in the UV-cured film. UV-cured IPEUMA films also show excellent chemical and solvent resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dzunuzovic, E, Tasic, S, Bozic, B, Babic, D, Dunjic, B, “UV-Curable Hyperbranched Urethane Acrylate Oligomers Containing Soybean Fatty Acids.” Prog. Org. Coat., 52 (2) 136–143 (2005)

    Article  Google Scholar 

  2. Jian, Z, Yong, H, Ming, X, Jun, N, “Preparation and Properties of Dual-Cure Polyurethane Acrylate.” Prog. Org. Coat., 66 (1) 35–39 (2009)

    Article  Google Scholar 

  3. Yong, H, Zhou, M, Wu, B, Jian, Z, Jun, N, “Synthesis and Properties of Novel Polyurethane Acrylate Containing 3(2-Hydroxyethyl) Isocyanurate Segment.” Prog. Org. Coat., 67 (3) 264–268 (2010)

    Article  Google Scholar 

  4. Gloeckner, P, Jung, T, Struck, S, Studer, K, Radiation Curing: Coatings and Printing Inks, Technical Basics, Applications and Trouble Shooting. Hannover, Vincentz Network, 2008

    Google Scholar 

  5. Wang, X, Soucek, M, “Investigation of Non-isocyanate Urethane Dimethacrylate Reactive Diluents for UV-Curable Polyurethane Coatings.” Prog. Org. Coat., 76 (7) 1057–1067 (2013)

    Article  Google Scholar 

  6. Srivastava, A, Agarwal, D, Mistry, S, Singh, J, “UV Curable Polyurethane Acrylate Coatings for Metal Surfaces.” Pigment Resin Technol., 37 (4) 217–223 (2008)

    Article  Google Scholar 

  7. Koleske, JV, Radiation Curing of Coatings. ASTM International, West Conshohocken, PA, 2002

    Book  Google Scholar 

  8. Rengasamy, S, Mannari, V, “Development of Soy-Based UV-Curable Acrylate Oligomers and Study of Their Film Properties.” Prog. Org. Coat., 76 (1) 78–85 (2013)

    Article  Google Scholar 

  9. Dzunuzovic, ES, Tasic, SV, Bozic, BR, Dzunuzovic, JV, Dunjica, BM, Jeremica, KB, “Mechanical and Thermal Properties of UV Cured Mixtures of Linear and Hyperbranched Urethane Acrylates.” Prog. Org. Coat., 74 (1) 158–164 (2012)

    Article  Google Scholar 

  10. Shi, R, Zhang, X, Dai, J, “Synthesis of TDI-Polyurethane/Polyacrylate Composite Emulsion by Solvent-Free Method and Performances of the Latex Film.” J. Macromol. Sci. Part A, 50 (3) 350–357 (2013)

    Article  Google Scholar 

  11. Meledyn, M, Paszkiewicz, R, Masiulanis, B, “Synthesis and Properties of UV-Curable Poly(imide-urethane) Acrylates.” J. Appl. Polym. Sci., 91 (2) 971–980 (2004)

    Article  Google Scholar 

  12. Hwang, HD, Kim, HJ, “Enhanced Thermal and Surface Properties of Waterborne UV-Curable Polycarbonate-Based Polyurethane (Meth)acrylate Dispersion by Incorporation of Polydimethylsiloxane.” React. Funct. Polym., 71 (6) 655–665 (2011)

    Article  Google Scholar 

  13. Bai, C, Zhang, X, Jiabing, JD, “Synthesis and Characterization of a New UV Cross-Linkable Waterborne Siloxane-Polyurethane Dispersion.” J. Macromol. Sci. Part A: Pure Appl. Chem., 44 (11) 1203–1208 (2007)

    Article  Google Scholar 

  14. Xu, J, Rong, X, Chi, T, Wang, M, Wang, Y, Dongya, Y, Qiu, F, “Preparation, Characterization of UV-Curable Waterborne Polyurethane Acrylate and the Application in Metal Iron Surface Protection.” J. Appl. Polym. Sci., 130 (5) 3142–3152 (2013)

    Article  Google Scholar 

  15. Seo, Jongchul, Jang, ES, Song, JH, Choi, S, Khan, SB, Han, H, “Preparation and Properties of Poly(urethane-acrylate) Films for Ultraviolet-Curable Coatings.” J. Appl. Polym. Sci., 118 (4) 2454–2460 (2010)

    Google Scholar 

  16. Umare, SS, Chandure, AS, “Synthesis, Characterization and Biodegradation Studies of Poly(ester-Urethanes)s.” Chem. Eng. J., 142 (1) 65–77 (2008)

    Article  Google Scholar 

  17. Bhusari, GS, Umare, SS, Chandure, AS, “Synthesis, Characterization and Biodegradation Studies of Poly(ester-urethanes)s.” Emerg. Mater. Res., 3 (2) 91–100 (2013)

    Article  Google Scholar 

  18. Wang, F, Hu, JQ, Tu, WP, “Study on Microstructure of UV-Curable Polyurethane Acrylate Films.” Prog. Org. Coat., 62 (3) 245–250 (2008)

    Article  Google Scholar 

  19. Yoo, H, Lee, Y, Kwon, J, Kim, H, “Comparison of the Properties of UV-Cured Polyurethane Acrylates Containing Different Diisocyanates and Low Molecular Weight Diols.” Fiber Polym., 2 (3) 122–128 (2001)

    Article  Google Scholar 

  20. Flory, PJ, “Statistical Mechanics of Swelling of Network Structures.” J. Chem. Phys., 18 (1) 108–111 (1950)

    Article  Google Scholar 

  21. Bristow, GM, Watson, WF, “Cohesive Energy Densities of Polymers. Part 1. Cohesive Energy Densities of Rubbers by Swelling Measurements.” Trans. Faraday. Soc., 54 1731 (1958)

    Article  Google Scholar 

  22. Brandrup, J, Immergent, EH, Polymer Handbook. Wiley Interscience, New York, 1967

    Google Scholar 

  23. Xu, H, Qiu, F, Wang, Y, Wu, W, Yang, D, Guo, Q, “UV-Curable Waterborne Polyurethane-Acrylate: Preparation, Characterization and Properties.” Prog. Org. Coat., 73 (1) 47–53 (2013)

    Article  Google Scholar 

  24. Mondal, S, Martin, D, “Hydrolytic Degradation of Segmented Polyurethane Copolymers for Biomedical Applications.” Polym. Degrad. Stab., 97 (8) 1553–1561 (2012)

    Article  Google Scholar 

  25. Deka, H, Karak, N, “Bio-Based Hyperbranched Polyurethanes for Surface Coating Applications.” Prog. Org. Coat., 66 (3) 192–198 (2009)

    Article  Google Scholar 

  26. Barlkani, M, Hepburn, C, “Determination of Crosslink Density by Swelling in the Castable Polyurethane Elastomer Based on 1/4-Cyclohexane Diisocyanate and para-Phenylene Diisocyanate.” Iranian J. Polym. Sci. Technol., 1 1–5 (1992)

    Google Scholar 

  27. Cunha, F, Melo, D, Veronese, V, Forte, M, “Study of Castor Oil Polyurethane-Poly(methyl methacrylate) Semi-Interpenetrating Polymer Network (SIPN) Reaction Parameters Using a 23 Factorial Experimental Design.” Mater. Res., 7 (4) 539–543 (2004)

    Article  Google Scholar 

  28. Peruzzo, PJ, Anbinder, PS, Pardini, OR, Carlos, CA, Leite, CA, Galembeck, F, Amalvy, JI, “Polyurethane/Acrylate Hybrids: Effects of the Acrylic Content and Thermal Treatment on the Polymer Properties.” J. Appl. Polym. Sci., 116 (5) 2694–2705 (2010)

    Google Scholar 

  29. Athawale, V, Kulkarni, M, “Preparation and Properties of Urethane/Acrylate Composite by Emulsion Polymerization Technique.” Prog. Org. Coat., 65 (3) 392–400 (2009)

    Article  Google Scholar 

  30. Sultana, M, Mahmood, Zia, K, Bhatti, H, Jamil, T, Hussain, R, Zuber, M, “Modification of Cellulosic Fiber with Polyurethane Acrylate Copolymers. Part I: Physicochemical Properties.” Carbohydr. Polym., 87 (1) 397–404 (2012)

    Article  Google Scholar 

  31. Huang, S, Lai, J, “Structure-Tensile Properties of Polyurethanes.” Eur. Polym. J., 33 (10) 1563–1567 (1997)

    Article  Google Scholar 

  32. Kim, BK, Lee, KH, Kim, HD, “Preparation and Properties of UV-Curable Polyurethane Acrylates.” J. Appl. Polym. Sci., 60 (6) 799–805 (1996)

    Article  Google Scholar 

  33. Xu, H, Qiu, F, Wang, Y, Yang, D, Wu, WZ, Chen, Z, “Preparation, Mechanical Properties of Waterborne Polyurethane and Crosslinked Polyurethane-Acrylate Composite.” J. Appl. Polym. Sci., 124 (2) 958–968 (2012)

    Article  Google Scholar 

  34. Hojabri, L, Jose, J, Leao, AL, Bouzidi, L, Narine, S, “Synthesis and Physical Properties of Lipid-Based Poly(ester-urethane)s I: Effect of Varying Polyester Segment Length.” Polymer, 53 (17) 3762–3771 (2012)

    Article  Google Scholar 

  35. Chattopadhayay, DK, Webster, DC, “Thermal Stability and Flame Retardancy of Polyurethanes.” Prog. Polym. Sci., 34 (10) 1068–1133 (2009)

    Article  Google Scholar 

  36. Leung, LM, Koberstein, JT, “DSC Annealing Study of Microphase Separation and Multiple Endothermic Behaviors in Polyether-Based Polyurethane Block Copolymers.” Macromole., 19 (3) 706–713 (1986)

    Article  Google Scholar 

  37. Oprea, S, “Synthesis and Characterization of Polyurethane Urea Acrylates: Effects of the Hard Segments Structure.” J. Appl. Polym. Sci., 105 (5) 509–2515 (2007)

    Article  Google Scholar 

  38. Tale, NV, Jagtap, RN, Tathe, DS, “An Efficient Approach for the Synthesis of Thermoset Polyurethane Acrylate Polymer and its Film Properties.” Des. Monomers Polym., 17 (2) 147–155 (2014)

    Article  Google Scholar 

  39. Corcuera, MA, Rueda, L, Fernandez d’Arlas, B, Arbelaiz, A, Marieta, C, Mondragon, I, Eceiza, A, “Microstructure and Properties of Polyurethanes Derived from Castor Oil.” Polym. Degrad. Stab., 95 (11) 2175–2184 (2010)

    Article  Google Scholar 

  40. Hsieh, T, Hsieh, K, Simon, G, Tiu, C, “Interpenetrating Polymer Networks of 2-Hydroxyethyl Methacrylate Terminated Polyurethanes and Polyurethanes.” Polymer, 40 (11) 3153–3163 (1999)

    Article  Google Scholar 

  41. Kim, Y, Kim, S, “Effect of Chemical Structure on the Biodegradation of Polyurethanes Under Composting Conditions.” Polym. Degrad. Stab., 62 (2) 343–352 (1998)

    Article  Google Scholar 

  42. Hong, JH, Jeon, HJ, Yoo, JH, Yu, WR, Youk, JH, “Synthesis and Characterization of Biodegradable Poly(ε-caprolactone-co-butyrolactone)s Based Polyurethane.” Polym. Degrad. Stab., 92 (7) 1186–1192 (2007)

    Article  Google Scholar 

  43. Ki, HC, Park, OO, “Synthesis, Characterization and Biodegradability of the Biodegradable Aliphatic–Aromatic Random co-Polyesters.” Polymer, 42 (5) 1849–1861 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors Ganesh S. Bhusari is thankful to the Director, VNIT, Nagpur (India) for awarding a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh S. Umare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhusari, G.S., Umare, S.S. & Chandure, A.S. Effects of NCO:OH ratio and HEMA on the physicochemical properties of photocurable poly(ester-urethane)methacrylates. J Coat Technol Res 12, 571–585 (2015). https://doi.org/10.1007/s11998-014-9635-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-014-9635-2

Keywords

Navigation