Skip to main content

Advertisement

Log in

CNSL: an environment friendly alternative for the modern coating industry

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Considering ecological and economical issues in the new generation coating industries, the maximum utilization of naturally occurring materials for polymer synthesis can be an obvious option. In the same line, one of the promising candidates for substituting partially, and to some extent totally, petroleum-based raw materials with an equivalent or even enhanced performance properties, is the Cashew Nut Shell Liquid (CNSL). This dark brown-colored viscous liquid obtained from shells of the cashew nut can be utilized for a number of polymerization reactions due to its reactive phenolic structure and a meta-substituted unsaturated aliphatic chain. Therefore, a wide variety of resins can be synthesized from CNSL, such as polyesters, phenolic resins, epoxy resins, polyurethanes, acrylics, vinyl, alkyds, etc. The present article discusses the potential of CNSL and its derivatives as an environment friendly alternative for petroleum-based raw materials as far as polymer and coating industries are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mukherjee, T, Kao, N, “PLA Based Biopolymer Reinforced with Natural Fibre: A Review.” J. Polym. Environ., 19 (3) 714–725 (2011)

    Article  Google Scholar 

  2. Ahmed, T, Marcal, H, Lawless, M, Wanandy, NS, Chiu, A, Foster, LJR, “Polyhydroxybutyrate and its Copolymer with Polyhydroxyvalerate as Biomaterials: Influence on Progression of Stem Cell Cycle.” Biomacromolecules, 11 (10) 2707–2715 (2010)

    Article  Google Scholar 

  3. Mohanty, AK, Misra, M, Hinrichsen, G, “Biofibres, Biodegradable Polymers and Biocomposites: An Overview.” Macromol. Mater. Eng., 276/277 1–24 (2000)

    Article  Google Scholar 

  4. Zafar, F, Ashraf, SM, Ahmad, S, “Air Drying Polyesteramide from a Sustainable Resource.” Prog. Org. Coat., 51 250–256 (2004)

    Article  Google Scholar 

  5. Pan, X, Sengupta, P, Webster, DC, “High Biobased Content Epoxy-Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids.” Biomacromolecules, 12 (6) 2416–2428 (2011)

    Article  Google Scholar 

  6. Ferrer, CB, Hablot, E, Garrigos, MC, Bocchini, S, Averous, L, Jimenez, A, “Relationship Between Morphology, Properties and Degradation Parameters of Novative Biobased Thermoplastic Polyurethanes Obtained from Dimer Fatty Acids.” Polym. Degrad. Stab., 97 1964–1969 (2012)

    Article  Google Scholar 

  7. Oliveira, WD, Glasser, WG, “Multiphase Materials with Lignin. II. Starlike Copolymers with Caprolactone.” Macromolecules, 27 5–11 (1994)

    Article  Google Scholar 

  8. Li, Y, Mlynar, J, Sarkanen, S, “The First 85% Kraft Lignin-Based Thermoplastics.” J. Polym. Sci. B: Polym. Phys., 35 (12) 1899–1910 (1997)

    Article  Google Scholar 

  9. Cordeiro, N, Aurenty, P, Belgacem, MN, Gandini, A, Neto, CP, “Surface Properties of Suberin.” J. Colloid Interface Sci., 187 498–508 (1997)

    Article  Google Scholar 

  10. Dumont, MJ, Kong, X, Narine, SS, “Polyurethanes from Benzene Polyols Synthesized from Vegetable Oils: Dependence of Physical Properties on Structure.” J. Appl. Polym. Sci., 117 3196–3203 (2010)

    Google Scholar 

  11. Wilson, RJ, The Market for Cashew Nut Kernels and Cashew Nut Shell Liquid. Tropical Products Institute, London, 1975

    Google Scholar 

  12. Araújo, BQ, Saffi, J, Richter, MF, “Antioxidant Properties and Chemical Composition of Technical Cashew Nut Shell Liquid (tCNSL).” Food Chem., 126 1044–1048 (2011)

    Article  Google Scholar 

  13. Lomonaco, D, Maia, FJN, Clemente, CS, Mota, JPF, Mazzetto, SE, “Thermal Studies of New Biodiesel Antioxidants Synthesized from a Natural Occurring Phenolic Lipid.” Fuel, 97 552–559 (2012)

    Article  Google Scholar 

  14. Food and Agriculture Organization of the United Nation, FAOSTAT Data, 2012, www.fao.org.

  15. Hammed, LA, Anikwe, JC, Adedeji, AR, “Cashew Nuts and Production Development in Nigeria.” Am. Eurasian J. Sci. Res., 3 (1) 54–61 (2008)

    Google Scholar 

  16. Hughes, ER, “Method of Expelling the Liquid of Cashew Nut Shells by Heat.” US Patent 2,058,456, 1939

  17. Rector, TM, “Extracting Oil from Cashew Nuts.” US Patent 2,018,091, 1936

  18. Caplan, S, “Cashew Nut Shell liquid and Kernel Oil Separation.” US Patent 2,480,221, 1949

  19. Tyman, JHP, Johnson, RA, Muir, M, Rokhgar, R, “The extraction of natural cashew nut-shell liquid from the cashew nut (Anacardium occidentale).” J. Am. Oil Chem. Soc., 66 553–557 (1989)

    Article  Google Scholar 

  20. Saito, S, “Research Activities on Supercritical Fluid Science and Technology in Japan—A Review.” J. Supercrit. Fluids, 8 177–204 (1995)

    Article  Google Scholar 

  21. Mele, G, Vasapollo, G, “Fine Chemicals and New Hybrid Materials from Cardanol.” Mini. Rev. Chem. Org., 5 243–253 (2008)

    Article  Google Scholar 

  22. Bhunia, HP, Nando, GB, Basak, A, Lenka, S, Nayak, PL, “Synthesis and Characterization of Polymers from Cashew Nut Shell Liquid (CNSL), a Renewable Resource III. Synthesis of a Polyether.” Eur. Polym. J., 35 (9) 1713–1722 (1999)

    Article  Google Scholar 

  23. Patel, RN, Bandyopadhyay, S, Ganesh, A, “Economic Appraisal of Supercritical Fluid Extraction of Refined Cashew Nut Shell Liquid.” J. Chromatogr. A, 1124 (1–2) 130–138 (2006)

    Article  Google Scholar 

  24. Mutasingwa, J, “An Assessment of Cashew Nut Shell Liquid as a Corrosion Inhibitor of Mild Steel Alloys in Flowing Aqueous System”, MSc. Thesis, University of Dar Es Salaam, 2004

  25. Gedam, PH, Sampathkumaran, PS, “Cashew Nut Shell Liquid: Extraction, Chemistry and Application.” Prog. Org. Coat., 14 115–157 (1986)

    Article  Google Scholar 

  26. Akinhanmi, TF, Atasie, VN, “Chemical Composition and Physicochemical Properties of Cashew Nut (Anacardium occidentale) Oil and Cashew Nut Shell Liquid.” J. Agric. Food Environ. Sci., 2 (1) 1–10 (2008)

    Google Scholar 

  27. Paramashivappa, R, Kumar, PP, Vithayathil, PJ, Rao, AS, “Novel Method for Isolation of Major Phenolic Constituents from Cashew (Anacardium occidentale L.) Nut Shell Liquid.” J. Agric. Food Chem., 49 2548–2551 (2001)

    Article  Google Scholar 

  28. Harvey, MT, “Sulphonation Process.” US Patent 2,324,300, 1943

  29. Dawson, R, Wassemian, D, “Nitro-Hydrogenated Cardanols and Process for Preparing Same.” US Patent, 2,502,708, 1950

  30. Shivadasami, HM, “Production of Alkyd Resins.” British Patent 1,279,257, 1972

  31. Unnikrishnan, KP, Thachil, ET, “Synthesis and Characterization of Cardanol-Based Epoxy Systems.” Des. Monom. Polym., 11 (6) 593–607 (2008)

    Article  Google Scholar 

  32. Harvey, MT, “Resin form Cashew Nut Shell Oil.” US Patent 1,725,791, 1929

  33. Harvey, MT, “Substitute for Shellac and the Like.” US Patent 1,725,793, 1929

  34. Caplan, S, “Treatment of Cashew Nut Shell Liquid.” US Patent 2,176,059 (1940).

  35. Groote, MD, Pettingill, OH, “Oxyalkylated Drastically-Oxidized Cashew Nut Shell Liquid and Method of Making Same.” US Patent 2,531,502, 1950

  36. Aggarwal, LK, Thapliyal, PC, Karade, SR, “Anticorrosive Properties of the Epoxy-Cardanol Resin based Paints.” Prog. Org. Coat., 59 76–80 (2007)

    Article  Google Scholar 

  37. Huang, K, Zhang, Y, Li, M, Lian, J, Yang, X, Xia, J, “Preparation of a Light Color Cardanol-Based Curing Agent and Epoxy Resin Composite: Cure-Induced Phase Separation and Its Effect on Properties.” Prog. Org. Coat., 74 240–247 (2012)

    Article  Google Scholar 

  38. Kim, YH, An, ES, Park, SY, Song, BK, “Enzymatic Epoxidation and Polymerization of Cardanol obtained from a Renewable Resource and Curing of Epoxide-containing Polycardanol.” J. Mol. Catal. B: Enzym., 45 39–44 (2007)

    Article  Google Scholar 

  39. Campaner, P, D’Amico, D, Longo, L, Stifani, C, Tarzia, A, “Cardanol-Based Novolac Resins as Curing Agents of Epoxy Resins.” J. Appl. Polym. Sci., 114 3585–3591 (2009)

    Article  Google Scholar 

  40. Pathak, SK, Rao, BS, “Structural Effect of Phenalkamines on Adhesive Viscoelastic and Thermal Properties of Epoxy Networks.” J. Appl. Polym. Sci., 102 4741–4748 (2006)

    Article  Google Scholar 

  41. Tan, TTM, Nieu, NH, “Carbon Fiber Cardanol-Epoxy Composites.” J. Appl. Polym. Sci., 61 133–137 (1996)

    Article  Google Scholar 

  42. Madhusudhan, V, Murthy, BGK, “Polyfunctional Compounds from Cardanol.” Prog. Org. Coat., 20 63–71 (1992)

    Article  Google Scholar 

  43. Tan, TTM, “Cardanol–Glycols and Cardanol–Glycol-Based Polyurethane Films.” J. Appl. Polym. Sci., 65 507–510 (1997)

    Article  Google Scholar 

  44. Mythili, CV, Retna, AM, Gopalakrishnan, S, “Physical, Mechanical, and Thermal Properties of Polyurethanes Based on Hydroxyalkylated Cardanol–Formaldehyde Resins.” J. Appl. Polym. Sci., 98 284–288 (2005)

    Article  Google Scholar 

  45. Rekha, N, Asha, SK, “Synthesis and FTIR Spectroscopic Investigation of the UV Curing Kinetics of Telechelic Urethane Methacrylate Crosslinkers Based on the Renewable Resource-Cardanol.” J. Appl. Polym. Sci., 109 2781–2790 (2008)

    Article  Google Scholar 

  46. Mahanwar, PA, Kale, DD, “Effect of Cashew Nut Shell Liquid (CNSL) on Properties of Phenolic Resins.” J. Appl. Polym. Sci., 61 2107–2111 (1996)

    Article  Google Scholar 

  47. Papadopoulou, E, Chrissafis, K, “Thermal Study of Phenol–Formaldehyde Resin Modified with Cashew Nut Shell Liquid.” Thermochim. Acta, 512 105–109 (2011)

    Article  Google Scholar 

  48. Misra, AK, Pandey, GN, “Kinetics of Alkaline-Catalyzed Cardanol–Formaldehyde Reaction. I.” J. Appl. Polym. Sci., 29 361–372 (1984)

    Article  Google Scholar 

  49. Misra, AK, Pandey, GN, “Kinetics of Alkaline-Catalyzed Cardanol–Formaldehyde Reaction. II. Mechanism of the Reaction.” J. Appl. Polym. Sci., 30 969–977 (1985)

    Article  Google Scholar 

  50. Misra, AK, Pandey, GN, “Kinetics of Alkaline-Catalyzed Cardanol–Formaldehyde Reaction. I. Determination of Composition of the Resin.” J. Appl. Polym. Sci., 30 979–983 (1985)

    Article  Google Scholar 

  51. Sultania, M, Rai, JSP, Srivastava, D, “A Study on the Kinetics of Condensation Reaction of Cardanol and Formaldehyde, Part I.” Int. J. Chem. Kinet., 41 559–572 (2009)

    Article  Google Scholar 

  52. Nimuru, N, Miyakoshi, T, “Structural Characterization of Cashew Resin Film Using Two-Stage Pyrolysis-Gas Chromatography/Mass Spectrometry.” Int. J. Polym. Anal. Charact., 8 47–66 (2003)

    Article  Google Scholar 

  53. Roy, D, Basu, PK, Raghunathan, P, Eswaran, SV, “Cashew Nut Shell Liquid–based Tailor-Made Novolac Resins: Polymer Morphology Quantitation by 1-D and 2-D NMR Techniques and Performance Evaluation.” J. Appl. Polym. Sci., 89 1959–1965 (2003)

    Article  Google Scholar 

  54. Cardona, F, Tak, ALK, Fedrigo, J, “Novel Phenolic Resins with Improved Mechanical and Toughness Properties.” J. Appl. Polym. Sci., 123 2131–2139 (2012)

    Article  Google Scholar 

  55. Souza, FG, Michel, RC, Pinto, JC, Cosme, T, Oliveira, GE, “Effect of Pressure on the Structure and Electrical Conductivity of Cardanol–Furfural–Polyaniline Blends.” J. Appl. Polym. Sci., 119 2666–2673 (2011)

    Article  Google Scholar 

  56. Prabhakaran, K, Narayan, A, Pvithran, C, “Cardanol as a Dispersant Plasticizer for an Alumina/Toluene Tape Casting Slip.” J. Eur Ceram. Soc., 21 2873 (2001)

    Article  Google Scholar 

  57. Pillai, C, Prasad, V, Sudha, J, Bera, S, Menon, A, “Polymeric Resins from Renewable Resources. II. Synthesis and Characterization of Flame-Retardant Prepolymer from Cardanol.” J. Appl. Polym. Sci., 41 2487 (1990)

    Article  Google Scholar 

  58. Bhunia, H, Nando, G, Chakib, T, “Synthesis and Characterization of Polymers from Cashew Nut Shell Liquid (CNSL), a Renewable Resource II. Synthesis of Polyurethanes.” Eur. Polym. J., 35 1381 (1999)

    Article  Google Scholar 

  59. Frigone, M, Masica, L, Aciermo, D, “Oligomeric and Polymeric Modifiers for Toughening of Epoxy Resins.” Eur. Polym. J, 31 1021 (1995)

    Article  Google Scholar 

  60. Tripathi, G, Srivastava, D, “Effect of Carboxyl-terminated Poly(butadiene-co-acrylonitrile) (CTBN) Concentration on Thermal and Mechanical Properties of Binary Blends of Diglycidyl Ether of Bisphenol-A (DGEBA) Epoxy Resin.” Mater. Sci. Eng: A, 443 (1–2) 262–269 (2007)

    Article  Google Scholar 

  61. Pearson, R, Yee, A, “Toughening Mechanisms in Elastomer-modified Epoxies—Part 3. The Effect of Cross-link Density.” J. Mater. Sci., 24 2571–2580 (1989)

    Article  Google Scholar 

  62. May, C, Epoxy Resin—Chemistry and Technology. Marcel Dekker, New York (1988)

    Google Scholar 

  63. Yadav, R, Srivastava, D, “Studies on Cardanol-based Epoxidized Novolac Resin and Its Blends.” Chem. Chem. Technol., 2 (3) 173–184 (2008)

    Google Scholar 

  64. Kim, DS, Kim, YH, An, ES, Song, BK, Chelikani, R, “Polymerization of Cardanol using Soybean Peroxidase and its Potential Application as Anti-bio Film Coating Material.” Biotechnol. Lett., 25 (18) 1521 (2003)

    Article  Google Scholar 

  65. Choi, YH, Kim, JC, Ahn, JK, Ko, SY, Kim, DH, Lee, TY, “Anti-biofouling Behaviour of Natural Unsaturated Hydrocarbon Phenols Impregnated in PDMS Matrix.” J. Ind. Eng. Chem., 14 292–296 (2008)

    Article  Google Scholar 

  66. More, AS, Sane, PS, Patil, AS, Wadgaonkar, PP, “Synthesis and Characterization of Aromatic Polyazomethines Bearing Pendant Pentadecyl Chains.” Polym. Degrad. Stab., 95 1727–1735 (2010)

    Article  Google Scholar 

  67. Ravichandran, S, Bouldin, RM, Kumar, J, Nagarajan, R, “A Renewable Waste Material for the Synthesis of a Novel Non-Halogenated Flame Retardant Polymer.” J Clean Prod., 19 454–458 (2011)

    Article  Google Scholar 

  68. Bai, W, Xiao, X, Chen, Q, Xu, Y, Zheng, S, Lin, J, “Synthesis and Characterization of Cross-linked Polymer from Cardanol by Solvent-Free Grinding Polymerization.” Prog. Org. Coat., 75 184–189 (2012)

    Article  Google Scholar 

  69. Kim, YH, Won, K, Kwon, JM, Jeong, HS, Park, SY, An, ES, Song, BK, “Synthesis of Polycardanol from a Renewable Resource Using a Fungal Peroxidase from Coprinus cinereus.” J. Mol. Catal. B: Enzym., 34 33–38 (2005)

    Article  Google Scholar 

  70. Rao, BS, Palanisamy, A, “A New Thermoset System Based on Cardanol Benzoxazine and Hydroxy Benzoxazoline with Lower Cure Temperature.” Prog. Org. Coat., 74 427–434 (2012)

    Article  Google Scholar 

  71. Ramasri, M, Rao, GSS, Sampathkumaran, PS, Shirsalkar, MM, “Synthesis and Characterization of Mannich Bases from Cardbisphenol.” J. Appl. Polym. Sci., 39 1993–2004 (1990)

    Article  Google Scholar 

  72. More, AS, Patil, AS, Wadgaonkar, PP, “Poly(amideimide)s Containing Pendant Pentadecyl Chains: Synthesis and Characterization.” Polym. Degrad. Stab., 95 837–844 (2010)

    Article  Google Scholar 

  73. Philip, JYN, Buchweishaija, J, Mkayula, LL, Ye, L, “Preparation of Molecularly Imprinted Polymers Using Anacardic Acid Monomers Derived from Cashew Nut Shell Liquid.” J. Agric. Food Chem., 55 (22) 8870–8876 (2007)

    Article  Google Scholar 

  74. Kim, S, “The Reduction of Formaldehyde and VOCs Emission from Wood-Based Flooring by Green Adhesive using Cashew Nut Shell Liquid (CNSL).” J. Hazard. Mater., 182 919–922 (2010)

    Article  Google Scholar 

  75. Lee, JH, Jeon, J, Kim, S, “Green Adhesives Using Tannin and Cashew Nut Shell Liquid for Environment-Friendly Furniture Materials.” J. Korea Furnit. Soc., 22 (3) 219–229 (2011)

    Google Scholar 

  76. Sridhar, S, Cadlince, P, Ratra, MC, “Laminating Resol Varnishes Made with Crude Multivalent Phenol.” J. Appl. Polym. Sci., 47 797–804 (1993)

    Article  Google Scholar 

  77. Greco, A, Brunetti, D, Renna, G, Mele, G, Maffezzoli, A, “Plasticizer for Poly(vinyl chloride) from Cardanol as a Renewable Resource Material.” Polym. Degrad. Stab., 95 2169–2174 (2010)

    Article  Google Scholar 

  78. Dantas, TNC, Dantas, MSG, Neto, AAD, D’Ornellas, CV, Queiroza, LR, “Novel Antioxidants from Cashew Nut Shell Liquid Applied to Gasoline Stabilization.” Fuel, 82 1465–1469 (2003)

    Article  Google Scholar 

  79. Facanha, MAR, Mazzetto, SE, Carioca, JOB, De Barros, GG, “Evaluation of Antioxidant Properties of a Phosphorated Cardanol Compound on Mineral Oils (NH10 and NH20).” Fuel, 86 2416–2421 (2007)

    Article  Google Scholar 

  80. Lomonaco, D, Maia, FJN, Clemente, CS, Mota, JPF, Mazzetto, SE, “Plasticizer for Poly(vinyl chloride) from Cardanol as a Renewable Resource Material.” Fuel, 97 552–559 (2012)

    Article  Google Scholar 

  81. Achary, PGR, Mohanty, N, Guru, BN, Pal, NC, “Synthesis and Thermal Degradation Study of Polymer blends from Polyurethanes of Linseed Oil and Cardanol Based Dyes with Aminophenols.” J. Chem. Pharm. Res., 4 (3) 1475–1485 (2012)

    Google Scholar 

  82. Gopalakrishnan, S, Nevaditha, NT, Mythili, CV, “Thermal Degradation and XRD Studies of Diazotised-p-Sulphanilic Acid Dye Based Resins Synthesized from Renewable Resource.” Arch. Appl. Sci. Res., 4 (2) 1091–1099 (2012)

    Google Scholar 

  83. Paebumrung, P, Petsom, A, Thamyongkit, P, “Cardanol-Based Bis(azo) Dyes as a Gasoline 91 Colorant.” J. Am. Oil. Chem. Soc., 89 321–328 (2012)

    Article  Google Scholar 

  84. Philip, JYN, Buchweishaija, J, Mkayula, LL, “Cashew Nut Shell Liquid as an Alternative Corrosion Inhibitor for Carbon Steels.” Tanzan. J. Sci., 28 (2) 9–19 (2002)

    Google Scholar 

  85. Suryanarayan, SS, Satish, N, Anita, N, “Study of Sodium Salt of Cashew Nut Shell Liquid (CNSL) as an Alternate Dispersant in Coating of Paper.” IPPTA, 24 (2) 119–122 (2012)

    Google Scholar 

  86. Mark, HF, “Silane Coupling Agents.” In: Rogers, ME, Long, TE, (eds.) Encyclopedia of Polymer Science and Technology, 3rd ed., Vol. 8, pp. 38–49. Wiley, New York, 2004

  87. Tanaka, S, Iji, M, “Cardanol-Modified Silane Coupling Agent, Cardanol-Modified Filler, and Cellulose Resin Composition.” US Patent 0036940 A1, 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anagha S. Sabnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balgude, D., Sabnis, A.S. CNSL: an environment friendly alternative for the modern coating industry. J Coat Technol Res 11, 169–183 (2014). https://doi.org/10.1007/s11998-013-9521-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-013-9521-3

Keywords

Navigation