Skip to main content
Log in

Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The corrugated cardboard used in food packaging readily absorbs moisture from the environment, especially when stored under high humidity conditions. In this research, the water barrier of cardboard was modified by changing the wettability of the cardboard surface, applying hydrophobic coatings of polylactic acid (PLA), alone or in combination with other substances that absorb gases (ethylene scavengers) such as clinoptilolite (C), sepiolite (S), and sepiolite permanganate (SP). The water barrier properties tested as water vapor permeability (WVP), water absorptiveness (WA), and water drop contact angle (CA) showed that the water resistance of the resulting cardboard was improved by the coating. The best results of these properties were obtained by using a coating of PLA 2% alone. In addition, PLA 2% with C 1.5% also showed good results, but the WA results were higher. The use of PLA coating produces a greater uniformity and smoothness of the coated cardboard surface due to the best filling of the pores or spaces between cellulose fibers. Our findings and the environmentally friendly nature of PLA strengthen the advantages of using these kinds of coatings on cardboard trays for the packaging, storage, and transport of foods such as fresh fruit and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Twede, D, Selke, SEM, Corrugated Fiberboard Structure and Properties. Cartons, Crates and Corrugated Board: Handbook of Paper and Wood Packaging Technology. DesStech Publications, Lancaster (2005)

    Google Scholar 

  2. Lopez-Rubio, A, Gavara, R, Lagaron, JM, “Bioactive Packaging: Turning Foods into Healthier Foods Through Biomaterials.” Trends Food Sci. Technol., 17 (10) 567–575 (2006)

    Article  CAS  Google Scholar 

  3. Rhim, JW, Lee, JH, Ng, PKW, “Mechanical and Barrier Properties of Biodegradable Soy Protein Isolate Based Films Coated with Polylactic Acid.” Lebensm. Wiss. Technol., 40 (2) 232–238 (2007)

    Article  CAS  Google Scholar 

  4. Krook, M, Gällsted, M, Hedenqvist, MS, “A Study on Montmorillonite/Polyethylene Nanocomposite Extrusion-Coated Paperboard.” Packag. Technol. Sci., 18 (1) 11–20 (2005)

    Article  CAS  Google Scholar 

  5. Robertson, GL, Paper and Paper-Based Packaging Materials. Food Packaging, Principles and Practice. Marcel Dekker, New York (1993)

    Google Scholar 

  6. Robson, NC, “Recycling Practice and Problems.” International Symposium on Packaging, Economic Development and the Environment. Institute of Packaging Professionals, Herndon, VA (1993)

  7. Gällstedt, M, Brottman, A, Hedenqvist, MS, “Packaging-Related Properties of Protein and Chitosan Coated Paper.” Packag. Technol. Sci., 18 (4) 161–170 (2005)

    Article  Google Scholar 

  8. Plackett, DV, Holm, VK, Johansen, P, Ndoni, S, Nielsen, PV, Sipilainen-Malm, T, Södergård, A, Verstichel, S, “Characterization of L-Polylactide and L-Polylactide-Polycaprolactone Co-polymer Films for Use in Cheese-Packaging Applications.” Packag. Technol. Sci., 19 (1) 1–24 (2006)

    Article  CAS  Google Scholar 

  9. Datta, R, Henry, M, “Lactic Acid: Recent Advances in Products, Processes and Technologies—A Review.” J. Chem. Technol. Biotechnol., 81 (7) 1119–1129 (2006)

    Article  CAS  Google Scholar 

  10. Rhim, JW, Lee, JH, Hong, SI, “Water Resistance and Mechanical Properties of Biopolymer (Alginate and Soy Protein) Coated Paperboards.” Lebensm. Wiss. Technol., 39 (7) 806–813 (2006)

    Article  CAS  Google Scholar 

  11. Garlotta, DA, “A Literature Review of Poly(lactic acid).” J. Polym. Environ., 9 (2) 63–84 (2001)

    Article  CAS  Google Scholar 

  12. Lim, LT, Auras, R, Rubino, M, “Processing Technologies for Poly(lactic acid).” Prog. Polym. Sci., 33 (8) 820–852 (2008)

    Article  CAS  Google Scholar 

  13. Conn, RE, Kolstad, JJ, Borzelleca, JF, Dixle, DS, Filer, LJ, Jr, LaDu, BN, Jr, Pariza, MW, “Safety Assessment of Polylactide (PLA) for Use as a Food-Contact Polymer.” Food Chem. Toxicol., 33 (4) 273–283 (1995)

    Article  CAS  Google Scholar 

  14. Weber, CJ, Haugaard, V, Festersen, R, Bertelsen, G, “Production and Applications of Biobased Packaging Materials for the Food Industry.” Food Addit. Contam., 19 (1) 172–177 (2002)

    Article  CAS  Google Scholar 

  15. Chaves, AR, Mugrider, A, Fernandez-Lozano, J, Limongelli, JC, “Biodegradable and Biodesintegrable Films Employed for the Storage of Long Keeping Tomatoes.” Investigación Agraria. Producción y Protección de Vegetales, 13 (1–2) 173–184 (1998)

    Google Scholar 

  16. García-García, I, Taboada-Rodríguez, A, López-Gómez, A, Marín-Iniesta, F, “Active Packaging of Cardboard to Extend the Shelf Life of Tomatoes.” Food Bioprocess Technol., 6 (3) 754–761 (2013)

    Article  Google Scholar 

  17. Zagory, D, Ethylene-Removing Packaging: Active Food Packaging. Blackie Academic and Professional, London (1995)

    Google Scholar 

  18. Oms-Oliu, G, Soliva-Fortuny, R, Martín-Belloso, O, “Effect of Ripeness on the Shelf-Life of Fresh-Cut Melon Preserved by Modified Atmosphere Packaging.” Eur. Food Res. Technol., 225 (3–4) 301–311 (2007)

    Article  CAS  Google Scholar 

  19. Aguayo, E, Escalona, V, Artés, F, “Quality of Fresh-Cut Tomato as Affected by Type of Cut, Packaging, Temperature and Storage Time.” Eur. Food Res. Technol., 219 (5) 492–499 (2004)

    Article  CAS  Google Scholar 

  20. DeEll, JR, Toivnonen, PMA, Cornut, F, Vigneualt, C, “Addition of Sorbitol with KMnO4 Improves Broccoli Quality Retention in Modified Atmosphere Packages.” J. Food Qual., 29 (1) 65–75 (2006)

    Article  CAS  Google Scholar 

  21. Vermeiren, L, Devlieghere, F, van Beest, M, de Kruijf, N, Debevere, J, “Developments in the Active Packaging of Foods.” Trends Food Sci. Technol., 10 (3) 77–86 (1999)

    Article  CAS  Google Scholar 

  22. Aktas, SN, Esin, A, Bayindirli, A, “A New Protective Polyethylene Based Film Containing Zeolites for the Packaging of Fruits and Vegetables: Film Preparation.” Turk. J. Eng. Environ. Sci., 27 (4) 1–9 (2003)

    CAS  Google Scholar 

  23. Auras, R, Selke, S, Yuzay, IE, “Poly(Lactic Acid) and Zeolite Composites and Method of Manufacturing the Same.” US Patent 20100236969, 2010

  24. Barrer, RM, Makki, MB, “Molecular Sieve Sorbents from Clinoptilolite.” Can. J. Chem., 42 1481–1487 (1964)

    Article  CAS  Google Scholar 

  25. Sendek, ME, Virji, MA, White, DA, Bussey, RL, “Water Sorption Properties of Modified Clinoptilolite.” Sep. Purif. Technol., 11 (2) 137–141 (1997)

    Article  Google Scholar 

  26. Wilkin, RT, Barnes, HL, “Thermodynamics of Hydration of Na- and K-Clinoptilolite to 300 C.” Phys. Chem. Miner., 26 468–476 (1999)

    Article  CAS  Google Scholar 

  27. Polat, E, Karaca, M, Demir, H, Naci-Onus, A, “Use of Natural Zeolite (Clinoptilolite) in Agriculture.” J. Fruit Ornam. Plant Res., 12 (Special ed.) 183–189 (2004)

    CAS  Google Scholar 

  28. Kilincarslan, A, Akyil, S, “Uranium Adsorption Characteristic and Thermodynamic Behavior of Clinoptilolite Zeolite.” J. Radioanal. Nucl. Chem., 264 (3) 541–548 (2005)

    Article  CAS  Google Scholar 

  29. Alvarez, JB, García, PA, “Reactive Absorbents for the Conservation of Harvested Vegetable Products”. US Patent 4,906,398, 1990

  30. Galán, E, “Properties and Applications of Palygorskite-Sepiolite Clays.” Clay Miner., 31 443–453 (1996)

    Article  Google Scholar 

  31. Wang, J, Ren, S, Guo, M, “Preparation and Humidity Controlling Behaviors of Sepiolite/Polyacrylic Acid (Sodium) Composite.” Proc. Eng., 27 423–430 (2012)

    Article  CAS  Google Scholar 

  32. Rhim, JW, Mohanty, AK, Singh, SP, Ng, PKW, “Effect of the Processing Methods on the Performance of Polylactide Films: Thermocompression.” J. Appl. Polym. Sci., 101 (6) 3736–3742 (2006)

    Article  CAS  Google Scholar 

  33. Rhim, JW, Kim, JH, “Properties of Poly(lactide)-Coated Paperboard for the Use of 1-way Paper Cup.” J. Food Sci., 74 (2) 105–111 (2009)

    Article  Google Scholar 

  34. Gennadios, A, Weller, CL, Gooding, CH, “Measurement Errors in Water Vapor Permeability of Highly Permeable, Hydrophilic Edible Films.” J. Food Eng., 21 (4) 395–409 (1994)

    Article  Google Scholar 

  35. Han, JH, Krochta, JM, “Wetting Properties and Water Vapor Permeability of Whey-Protein-Coated Paper.” Trans. Am. Soc. Agric. Eng., 42 (5) 1375–1382 (1999)

    CAS  Google Scholar 

  36. Santangelo, S, Gorrasi, G, Di Lieto, R, De Pasquale, S, Patimo, G, Piperopoulos, E, Lanza, M, Faggio, G, Mauriello, F, Messina, G, Milone, C, “Polylactide and Carbon Nanotubes/Smectite-Clay Nanocomposites: Preparation, Characterization, Sorptive and Electrical Properties.” Appl. Clay Sci., 53 188–194 (2011)

    Article  CAS  Google Scholar 

  37. Rhim, JW, Lee, JH, Hong, SI, “Increase in Water Resistance of Paperboard by Coating with Poly(lactide).” Packag. Technol. Sci., 20 (6) 393–402 (2007)

    Article  CAS  Google Scholar 

  38. Mejía, A, García, N, Guzmán, J, Tiemblo, P, “Confinement and Nucleation Effects in Poly(ethylene oxide) Melt-Compounded with Neat and Coated Sepiolite Nanofibers: Modulation of the Structure and Semicrystalline Morphology.” Eur. Polym. J., 49 (1) 118–129 (2013)

    Google Scholar 

  39. Guosheng, L, Jinsheng, L, Yan, D, Guangchuan, L, Qingguo, T, “Influence of Microstructure of Sepiolite on Its Water Vapor Adsorption Properties.” J. Chin. Ceram. Soc. (2005)

  40. Vargha-Butler, EI, Kiss, E, Lam, CNC, Keresztes, Z, Kálmán, E, Zhang, L, Neumann, AW, “Wettability of Biodegradable Surfaces.” Colloid Polym. Sci., 279 1160–1168 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the company S.A.E. de Cartón Ondulado (SAECO) (Murcia, Spain) and CDTI (Spanish Center for the Development of Industrial Technology), which financed this work through Projects IDI-20070306 and IDI-20070468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulgencio Marín-Iniesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taboada-Rodríguez, A., García-García, I., Cava-Roda, R. et al. Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers. J Coat Technol Res 10, 749–755 (2013). https://doi.org/10.1007/s11998-013-9493-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-013-9493-3

Keywords

Navigation