Skip to main content
Log in

Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Controlled corrosion of magnesium is critical for its clinical application to orthopedic devices. For this purpose, we coated the surface of Mg with a biodegradable polymer, polycaprolactone (PCL) and attempted to control the Mg corrosion with varied coating thicknesses in a reproducible manner. As we increased the coating thickness from 0 to 13.31 ± 0.36 μm, the volume of hydrogen gas and amount of Mg ions, the indicators of Mg corrosion, decreased by almost half from 0.57 mL/cm2/day and 0.55 mg/day to 0.20 mL/cm2/day and 0.26 mg/day, respectively. However, the elemental compositions on the surface revealed possible detachment of polymer coating and rapid water absorption at the early stage of corrosion for all coating thicknesses. Therefore, the lessons learned from this study suggest pre-treatment of the Mg surface for better polymer–metal adhesion, as well as preparation of the coating with lowered porosity as a stronger water-permeation barrier, to eventually allow precise control on Mg corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Staiger, MP, Pietak, AM, Huadmai, J, Dias, G, “Magnesium and its alloys as orthopedic biomaterials: a review.” Biomaterials, 27 (9) 1728–1734 (2006)

    Article  CAS  Google Scholar 

  2. Niinomi, M, “Recent Metallic Materials for Biomedical Applications.” Metall. Mater. Trans. A, 33 (3) 477–486 (2002)

    Article  Google Scholar 

  3. Ambrose, CG, Clanton, TO, “Bioabsorbable Implants: Review of Clinical Experience in Orthopedic Surgery.” Ann. Biomed. Eng., 32 (1) 171–177 (2004)

    Article  Google Scholar 

  4. Middleton, JC, Tipton, AJ, “Synthetic Biodegradable Polymers as Orthopedic Devices.” Biomaterials, 21 (23) 2335–2346 (2000)

    Article  CAS  Google Scholar 

  5. Shikinami, Y, Okuno, M, “Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly-lactide (PLLA). Part II: Practical Properties of Miniscrews and Miniplates.” Biomaterials, 22 (23) 3197–3211 (2001)

    Article  CAS  Google Scholar 

  6. Zhang, S, Zhang, X, Zhao, C, Li, J, Song, Y, Xie, C, Tao, H, Zhang, Y, He, Y, Jiang, Y, “Research on an Mg–Zn Alloy as a Degradable Biomaterial.” Acta Biomater., 6 (2) 626–640 (2010)

    Article  CAS  Google Scholar 

  7. Zhang, E, Xu, L, Yu, G, Pan, F, Yang, K, “In Vivo Evaluation of Biodegradable Magnesium Alloy Bone Implant in the First 6 Months Implantation.” J. Biomed. Mater. Res. A, 90 (3) 882–893 (2009)

    Google Scholar 

  8. Reifenrath, J, Bormann, D, Meyer-Lindenberg, A, “Magnesium Alloys as Promising Degradable Implant Materials in Orthopaedic Research.” In: Czerwinski, F (ed.) Magnesium Alloys—Corrosion and Surface Treatments. InTech (2011). Available from http://www.intechopen.com/books/magnesium-alloys-corrosion-and-surface-treatments/magnesium-alloys-as-promising-degradable-implant-materials-in-orthopaedic-research

  9. Gu, XN, Zheng, YF, “A Review on Magnesium Alloys as Biodegradable Materials.” Front. Mater. Sci. China, 4 (2) 111–115 (2010)

    Article  Google Scholar 

  10. Wang, H, Shi, Z, “In Vitro Biodegradation Behavior of Magnesium and Magnesium Alloy.” J. Biomed. Mater. Res. Part B: Appl. Biomater., 98 (2) 203–209 (2011)

    Article  Google Scholar 

  11. Yamamoto, A, Hiromoto, S, “Effect of Inorganic Salts, Amino Acids and Proteins on the Degradation of Pure Magnesium In Vitro.” Mater. Sci. Eng. C, 29 (5) 1559–1568 (2009)

    Article  CAS  Google Scholar 

  12. Saris, NEL, Mervaala, E, Karppanen, H, Khawaja, JA, Lewenstam, A, “Magnesium: An Update on Physiological, Clinical and Analytical Aspects.” Clin. Chim. Acta, 294 (1–2) 1–26 (2000)

    Article  CAS  Google Scholar 

  13. Vormann, J, “Magnesium: Nutrition and Metabolism.” Mol. Aspects Med., 24 (1–3) 27–37 (2003)

    Article  CAS  Google Scholar 

  14. Witte, F, Kaese, V, Haferkamp, H, Switzer, E, Meyer-Lindenberg, A, Wirth, C, Windhagen, H, “In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response.” Biomaterials, 26 (17) 3557–3563 (2005)

    Article  CAS  Google Scholar 

  15. Song, G, “Control of Biodegradation of Biocompatable Magnesium Alloys.” Corros. Sci., 49 (4) 1696–1701 (2007)

    Article  CAS  Google Scholar 

  16. Fan, Y, Wu, G, Zhai, C, “Influence of Cerium on the Microstructure, Mechanical Properties and Corrosion Resistance of Magnesium Alloy.” Mater. Sci. Eng. A, 433 (1) 208–215 (2006)

    Google Scholar 

  17. Song, G, St John, D, “The Effect of Zirconium Grain Refinement on the Corrosion Behaviour of Magnesium Rare Earth Alloy MEZ.” J. Light Met., 2 (1) 1–16 (2002)

    Article  Google Scholar 

  18. Gu, X, Zheng, Y, Lan, Q, Cheng, Y, Zhang, Z, Xi, T, Zhang, D, “Surface Modification of an Mg-1Ca Alloy to Slow Down its Biocorrosion by Chitosan.” Biomed. Mater., 4 044109 (2009)

    Article  CAS  Google Scholar 

  19. Ng, W, Wong, M, Cheng, F, “Stearic Acid Coating on Magnesium for Enhancing Corrosion Resistance in Hanks’ Solution.” Surf. Coat. Technol., 204 (11) 1823–1830 (2010)

    Article  CAS  Google Scholar 

  20. Li, J, Cao, P, Zhang, X, Zhang, S, He, Y, “In Vitro Degradation and Cell Attachment of a PLGA Coated Biodegradable Mg-6Zn Based Alloy.” J. Mater. Sci., 45 6038–6045 (2010)

    Article  CAS  Google Scholar 

  21. Chen, Y, Song, Y, Zhang, S, Li, J, Zhao, C, Zhang, X, “Interaction Between a High Purity Magnesium Surface and PCL and PLA Coatings During Dynamic Degradation.” Biomed. Mater., 6 025005 (2011)

    Article  Google Scholar 

  22. Gray, J, Luan, B, “Protective Coatings on Magnesium and Its Alloys: A Critical Review.” J. Alloy. Compd., 336 (1–2) 88–113 (2002)

    Article  CAS  Google Scholar 

  23. Scriven, L, Physics and Applications of Dip Coating and Spin Coating. Cambridge University Press, Cambridge, 1988

    Google Scholar 

  24. Lee, JY, Han, G, Kim, YC, Byun, JY, Jang, J, Seok, HK, Yang, SJ, “Effects of Impurities on the Biodegradation Behavior of Pure Magnesium.” Metal. Mater. Int., 15 (6) 955–961 (2009)

    Article  CAS  Google Scholar 

  25. Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, K, “A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants.” Biomaterials, 31 (8) 2084–2096 (2010)

    Article  CAS  Google Scholar 

  26. Kirkland, N, Lespagnol, J, Birbilis, N, Staiger, M, “A Survey of Bio-corrosion Rates of Magnesium Alloys.” Corros. Sci., 52 (2) 287–291 (2010)

    Article  CAS  Google Scholar 

  27. Gray-Munro, JE, Seguin, C, Strong, M, “Influence of Surface Modification on the In Vitro Corrosion Rate of Magnesium Alloy AZ31.” J. Biomed. Mater. Res. Part A, 91 (1) 221–230 (2009)

    Article  Google Scholar 

  28. Tan, C, Blackwood, D, “Corrosion Protection by Multilayered Conducting Polymer Coatings.” Corros. Sci., 45 (3) 545–557 (2003)

    Article  CAS  Google Scholar 

  29. Bautista, A, “Filiform Corrosion in Polymer-Coated Metals.” Prog. Org. Coat., 28 (1) 49–58 (1996)

    Article  CAS  Google Scholar 

  30. Cha, Y, Pitt, C, “The Biodegradability of Polyester Blends.” Biomaterials, 11 (2) 108–112 (1990)

    Article  CAS  Google Scholar 

  31. Yang, J, Cui, F, Lee, IS, “Surface Modifications of Magnesium Alloys for Biomedical Applications.” Ann. Biomed. Eng., 39 1857–1871 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the “Seoul R&BD program; SS100008.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Bin Choy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Lee, J.E., Park, C.G. et al. Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium. J Coat Technol Res 10, 695–706 (2013). https://doi.org/10.1007/s11998-013-9474-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-013-9474-6

Keywords

Navigation