Skip to main content

Advertisement

Log in

Antibacterial natural leather for application in the public transport system

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In the public transport system, hand-touch surfaces such as seats in buses, trains, trams, and airplanes represent a reservoir of bacteria and a potential risk for contamination among passengers. The antimicrobial activity of silver has been known since ancient times. In this work, natural leather commonly used in the public transport system was treated with silver through the in situ photoreduction of a silver solution. The morphology of the coating and the distribution of silver clusters were studied by scanning electron microscopy and by energy dispersive X-ray spectroscopy. The amount of silver on the surface was quantified by thermo-gravimetric analysis. The antibacterial capability of the treated materials was checked against Gram-positive and Gram-negative bacteria. Taber test was conducted on silver treated samples in order to study the durability of the treatment. The morphology of the silver coating and its antibacterial capability were analyzed also after the Taber test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kramer, A, Schwebke, I, Kampf, G, “How Long do Nosocomial Pathogens Persist on Inanimate Surfaces? A Systematic Review.” BMC Infect. Dis., (2006). doi:10.1186/1471-2334-6-130

    Google Scholar 

  2. Stepanovic, S, Cirkovic, I, Djukic, S, Vukovic, D, Svabic-Vlahovic, M, “Public Transport as a Reservoir of Methicillin-Resistant Staphylococci.” Lett. Appl. Microbiol., 47 339–341 (2008). doi:10.1111/j.1472-765X.2008.02436.x

    Article  CAS  Google Scholar 

  3. Kassem, I, “Concerning Public Transport as a Reservoir of Methicillin-Resistant Staphylococci.” Lett. Appl. Microbiol., 48 268 (2009). doi:10.1111/j.1472-765X.2008.02518.x

    Article  Google Scholar 

  4. Otter, JA, French, GL, “Bacterial Contamination on Touch Surfaces in the Public Transport System and in Public Areas of a Hospital in London.” Lett. Appl. Microbiol., 49 803–805 (2009). doi:10.1111/j.1472-765X.2009.02728.x

    Article  CAS  Google Scholar 

  5. Troko, J, Myles, P, Gibson, J, Hashim, A, et al., “Is Public Transport a Risk Factor for Acute Respiratory Infection?” BMC Infect. Dis., (2011). doi:10.1186/1471-2334-11-16

    Google Scholar 

  6. Mangili, A, Gendreau, MA, “Transmission of Infectious Diseases During Commercial Air Travel.” Lancet, 365 989–996 (2005). doi:10.1016/S0140-6736(05)71089-8

    Article  Google Scholar 

  7. McManus, CJ, Kelley, ST, “Molecular Survey of Aeroplane Bacterial Contamination.” J. Appl. Microbiol., 99 502–508 (2005). doi:10.1111/j.1365-2672.2005.02651.x

    Article  CAS  Google Scholar 

  8. Chen, X, Schluesener, HJ, “Nanosilver: A Nanoproduct in Medical Application.” Toxicol. Lett., 176 1–12 (2008). doi:10.1016/j.toxlet.2007.10.004

    Article  CAS  Google Scholar 

  9. Guzmán, MG, Dille, J, Godet, S, “Synthesis and Antibacterial Activity of Silver Nanoparticles Against Gram-Positive and Gram-Negative Bacteria.” Nanomedicine, 8 37–45 (2008). doi:10.1016/j.nano.2011.05.007

    Google Scholar 

  10. Kim, KJ, Sung, WS, Suh, BK, et al., “Antifungal Activity and Mode of Action of Silver Nano-particles on Candida albicans.” Biometals, 22 235–242 (2009). doi:10.1007/s10534-008-9159-2

    Article  CAS  Google Scholar 

  11. Lara, HH, Ayala-Nuñez, NV, Ixtepan-Turrent, L, Rodriguez-Padilla, C, “Mode of Antiviral Action of Silver Nanoparticles Against HIV-1.” J. Nanobiotechnol., 8 1 (2010). doi:10.1186/1477-3155-8-1

    Article  Google Scholar 

  12. Morones, JR, Elechiguerra, JL, Camacho, A, et al., “The Bactericidal Effect of Silver Nanoparticles.” J. Nanotechnol., 16 2346–2353 (2005). doi:10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  13. Kim, JS, Kuk, E, Yu, KN, et al., “Antimicrobial Effects of Silver Nanoparticles.” Nanomed. -Nanotechnol. Biol. Med., 3 95–101 (2007). doi:10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  14. Sondi, I, Salopek-Sondi, B, “Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria.” J. Colloid Interface Sci., 275 177–182 (2004). doi:10.1016/j.jcis.2004.02.012

    Article  CAS  Google Scholar 

  15. Rai, M, Yadav, A, Gade, A, “Silver Nanoparticles as a New Generation of Antimicrobials.” Biotechnol. Adv., 27 76–83 (2009). doi:10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  16. Lara, HH, Ayala-Nunez, NV, Ixtepan Turrent, LC, Rodrıguez Padilla, C, “Bactericidal Effect of Silver Nanoparticles Against Multidrug-Resistant Bacteria.” World J. Microbiol. Biotechnol., 26 615–621 (2010). doi:10.1007/s11274-009-0211-3

    Article  CAS  Google Scholar 

  17. Kassae, MZ, Akhavan, A, Sheikh, N, Sodagar, A, “Antibacterial Effects of a New Dental Acrylic Resin Containing Silver Nanoparticles.” J. Appl. Polym. Sci., 110 1699–1703 (2008). doi:10.1002/app.28762

    Article  Google Scholar 

  18. Samuel, U, Guggenbichler, JP, “Prevention of Catheter-Related Infections: The Potential of a New Nano-silver Impregnated Catheter.” Int. J. Antimicrob. Agents, 23 S75–S78 (2004). doi:10.1016/j.ijantimicag.2003.12.004

    Article  CAS  Google Scholar 

  19. Kim, J, Kwon, S, Ostler, E, “Antimicrobial Effect of Silver-Impregnated Cellulose: Potential for Antimicrobial Therapy.” J. Biol. Eng., (2009). doi:10.1186/1754-1611-3-20

    Google Scholar 

  20. Serghini-Monim, S, Norton, PR, Puddephatt, RJ, “Chemical Vapor Deposition of Silver on Plasma-Modified Polyurethane Surfaces.” J. Phys. Chem. B, 101 7808–7813 (1997). doi:10.1021/jp9713827

    Article  CAS  Google Scholar 

  21. Li, W, Seal, S, Megan, E, Ramsdell, J, Scammon, K, “Physical and Optical Properties of Sol–Gel Nano-Silver Doped Silica Film on Glass Substrate as a Function of Heat-Treatment Temperature.” J. Appl. Phys., 93 9553–9561 (2003). doi:10.1063/1.1571215

    Article  CAS  Google Scholar 

  22. Mahltig, B, Haufe, H, Bottcher, H, “Functionalisation of Textiles by Inorganic Sol–Gel Coatings.” J. Mater. Chem., 15 4385–4398 (2005). doi:10.1039/b505177k

    Article  CAS  Google Scholar 

  23. Xing, Y, Yang, X, Dai, J, “Antimicrobial Finishing of Cotton Textile Based on Water Glass by Sol–Gel Method.” J. Sol-Gel Sci. Technol., 43 187–192 (2007). doi:10.1007/s10971-007-1575-1

    Article  CAS  Google Scholar 

  24. Gupta, R, Kumar, A, “Bioactive Materials for Biomedical Applications Using Sol–Gel Technology.” Biomed. Mater., 3 034005 (2008). doi:10.1088/1748-6041/3/3/034005

    Article  Google Scholar 

  25. Pollini, M, Sannino, A, Maffezzoli, A, Licciulli, A, European Patent No. EP1986499, May 11, 2008.

  26. Pollini, M, Paladini, F, Licciulli, A, Maffezzoli, A, Sannino, A, “Engineering Nanostructured Silver Coatings for Antimicrobial Applications.” In: Cioffi, N, Rai, M (eds.) Nano-Antimicrobials Progress and Prospects1st, pp. 313–336. Springer, New York, 2012

    Chapter  Google Scholar 

  27. Pollini, M, Russo, M, Licciulli, A, Sannino, A, Maffezzoli, A, “Characterization of Antibacterial Silver Coated Yarns.” J. Mater. Sci. Mater. Med., 20 2361–2366 (2009). doi:10.1007/s10856-009-3796-z

    Article  CAS  Google Scholar 

  28. Pollini, M, Licciulli, A, Maffezzoli, A, Nicolais, L, Sannino, A, “Silver Coated Wool Yarns with Durable Antibacterial Properties.” J. Appl. Polym. Sci., 125 2239–2244 (2012). doi:10.1002/app.36444

    Article  CAS  Google Scholar 

  29. Pollini, M, Paladini, F, Catalano, M, Taurino, A, Licciulli, A, Maffezzoli, A, Sannino, A, Antibacterial Coatings on Haemodialysis Catheters by Photochemical Deposition of Silver Nanoparticles, 22 2005–2012 (2011). doi:10.1007/s10856-011-4380-x

    CAS  Google Scholar 

  30. Paladini, F, Pollini, M, Talà, A, Alifano, P, Sannino, A, “Efficacy of Silver Treated Catheters for Haemodialysis in Preventing Bacterial Adhesion.” J. Mater. Sci. Mater. Med., (2012). doi:10.1007/s10856-012-4674-7

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all the R&D Department of Adler Group for all the technical support and useful discussions during the experimental development and Dr. Paolo Scudieri for the comments and thoughts on the analyses to be performed in conditions closer to potential applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollini, M., Paladini, F., Licciulli, A. et al. Antibacterial natural leather for application in the public transport system. J Coat Technol Res 10, 239–245 (2013). https://doi.org/10.1007/s11998-012-9439-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9439-1

Keywords

Navigation