Skip to main content
Log in

Corrosion behavior of carbon steel coated with magnesium electrodeposited from methyl magnesium chloride solution

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Magnesium coating was electroplated on carbon steel to improve its corrosion protection. The analytical characterization of the magnesium coating was performed by scanning electron spectroscopy and energy dispersive X-ray spectroscopy. The electrochemical behavior of Mg-coated carbon steel was assessed by electrochemical impedance spectroscopy, open-circuit potential measurements and potentiodynamic polarization curves in 0.03% sodium chloride solution. The electrochemical results showed that the self-corrosion current density (i corr) of magnesium-coated steel was 0.32 mA cm−2 (about 1.8% of that of uncoated steel). Impedance results showed an increase of the total impedance when magnesium coating was applied on steel substrate. The corrosion protection was ensured by a two-step mechanism. The first step was cathodic polarization; the second step was the formation of a barrier due to magnesium oxides composed of MgO, Mg(OH2) and Mg(OH3)Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bonnel, A, Dabosi, F, Delouis, C, et al., “Corrosion Study of a Carbon Steel in Neutral Chloride Solutions by Impedance Techniques.” J. Electrochem. Soc., 130 (4) 753–761 (1983)

    Article  CAS  Google Scholar 

  2. Bousselmi, L, Fiaud, C, et al., “The characterization of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy.” J. Corros. Sci., 39 (9) 1711–1724 (1997)

    Article  CAS  Google Scholar 

  3. Bousselmi, L, Fiaud, C, et al., “Impedance Spectroscopy Study of a Steel Electrode in Condition of Scaling and Corrosion Interphase Model.” Electrochem. Acta, 44 (24) 4357–4363 (1999)

    Article  CAS  Google Scholar 

  4. Cheng, YF, Luo, JL, “Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel.” Electrochem. Acta, 44 (17) 2947–2957 (1999)

    Article  CAS  Google Scholar 

  5. Caceres, L, Vargas, T, Herrera, L, “Determination of Electrochemical Parameters and Corrosion Rate for Carbon Steel in Un-buffered Sodium Chloride Solutions Using a superposition Model.” J. Corros. Sci., 49 (8) 3168–3184 (2007)

    Article  CAS  Google Scholar 

  6. Takasaki, S, Yamada, Y, “Effects of Temperature and Aggressive Anions on Corrosion of Carbon Steel in Potable Water.” J. Corros. Sci., 49 (1) 240–247 (2007)

    Article  CAS  Google Scholar 

  7. Pérez, C, Collazo, A, et al., “Comparative Study Between Galvanised Steel and Three Duplex Systems Submitted to a Weathering Cyclic Test.” J. Corros. Sci., 44 (3) 481–500 (2002)

    Article  Google Scholar 

  8. Yadav, AP, Nishikata, A, Tsuru, T, “Degradation Mechanism of Galvanized Steel in Wet–Dry Cyclic Environment Containing Chloride Ions.” J. Corros. Sci., 46 (2) 169 (2004)

    Article  CAS  Google Scholar 

  9. Song, G, Atrens, A, et al., “The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions.” J. Corros. Sci., 39 (10–11) 1981–2004 (1997)

    Article  CAS  Google Scholar 

  10. Song, G, Atrens, A, et al., “The Electrochemical Corrosion of Pure Magnesium in 1 N NaCl.” J. Corros. Sci., 39 (5) 855–875 (1997)

    Article  CAS  Google Scholar 

  11. Yang, BG, Yu, YX, Wang, ZW, Qiu, ZX, “Magnesium Electrodeposition on the Steel Cathode.” J. Northeast. Univ., 21 (5) 62–65 (2000)

    Google Scholar 

  12. Brenner, A, Sligh, JL, Electrodeposition of Magnesium and Beryllium from Organic Baths. National Bureau of Standards, Washington, 1971

    Google Scholar 

  13. Gregory, TD, Hoffman, RG, Winterton, RC, “Nonaqueous Electrochemistry of Magnesium.” J. Electrochem. Soc., 137 (3) 775–780 (1990)

    Article  CAS  Google Scholar 

  14. Mayer, A, “Electrodeposition of Aluminum, Aluminum/Magnesium Alloys, and Magnesium from Organometallic Electrolytes.” J. Electrochem. Soc., 137 (9) 2806–2809 (1990)

    Article  CAS  Google Scholar 

  15. Liebenow, C, Yang, Z, Lobitz, P, “The Electrodeposition of Magnesium Using Solutions of Organomagnesium Halides, Amidomagnesium Halides and Magnesium Organoborates.” Electrochem. Commun., 2 (9) 641–645 (2000)

    Article  CAS  Google Scholar 

  16. Liebenow, C, “Reversibility of Electrochemical Magnesium Deposition from Grignard Solutions.” J. Appl. Electrochem., 27 (2) 221–225 (1997)

    Article  CAS  Google Scholar 

  17. Chevrot, C, Kham, K, Perichon, J, “Determination electrochimique des modifications des proprietes basiques d’organomagnesiens et d’organoalcalins par l’addition d’hexamethylphosphorotriamide ou de cryptate[2,2,2] a du tetrahydrofuranne.” J. Organomet. Chem., 161 (2) 139–151 (1978)

    Article  CAS  Google Scholar 

  18. Lopez-Buisàn Natta, MG, “Evidence of Two Anodic Processes in the Polarization Curves of Magnesium in Aqueous Media.” Corrosion, 57 (8) 712–720 (2001)

    Article  Google Scholar 

  19. Rethinam, AJ, Ramesh Bapu, GNK, Krishanan, RM, “Deposition of Nickel–Mica Electrocomposites and Characterisation.” J. Mater. Chem. Phys., 85 (2–3) 251–256 (2004)

    Article  CAS  Google Scholar 

  20. Battocchi, D, Simoes, AM, Tallman, DE, Bierwagen, GP, “Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys.” J. Corros. Sci., 48 (5) 1292–1306 (2006)

    Article  CAS  Google Scholar 

  21. Pébère, N, Riera, C, Dabosi, F, “Investigation of Magnesium Corrosion in Aerated Sodium Sulfate Solution by Electrochemical Impedance Spectroscopy.” J. Electrochim. Acta, 35 (2) 555–561 (1990)

    Article  Google Scholar 

  22. Baril, G, Pébère, N, “The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions.” J. Corros. Sci., 43 (3) 471–484 (2001)

    Article  CAS  Google Scholar 

  23. Munoz, FG, Flores, JM, et al., “Electrochemical Study on Magnesium Anodes in NaCl and CaSO4–Mg(OH)2 Aqueous Solutions.” J. Electrochim. Acta, 51 (8–9) 1820–1830 (2006)

    Article  Google Scholar 

  24. Zidoun, M, et al., “Comparative Study on the Corrosion Behavior of Milled and Unmilled Magnesium by Electrochemical Impedance Spectroscopy.” J. Corros. Sci., 46 (12) 3041–3055 (2004)

    Article  Google Scholar 

  25. Kim, JG, Koo, SJ, “Effect of Alloying Elements on Electrochemical Properties of Magnesium-Based Sacrificial Anodes.” Corrosion, 56 (4) 380–388 (2000)

    Article  CAS  Google Scholar 

  26. Pourbaix, M, L’Atlas des Equilibres Chimiques à 25°C. Gauthier-Villard, Paris, 1968

    Google Scholar 

  27. Qu, Q, Ma, J, Wang, L, et al., “Corrosion Behaviour of AZ31B Magnesium Alloy in NaCl Solutions Saturated with CO2.” J. Corros. Sci., 53 (4) 1186–1193 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by “Action Intégrée Franco-Tunisienne du Ministère des Affaires Etrangères et Européennes français et du Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Technologie tunisien”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Ben Hassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassen, S.B., Bousselmi, L., Rezrazi, E.M. et al. Corrosion behavior of carbon steel coated with magnesium electrodeposited from methyl magnesium chloride solution. J Coat Technol Res 10, 277–284 (2013). https://doi.org/10.1007/s11998-012-9436-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9436-4

Keywords

Navigation