Skip to main content
Log in

Synthesis, characterization, and analyses of mechanical, adhesion, and thermal properties of polysiloxane resin modified with segmented polyurethane

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Novel heat-resistant coating materials with excellent adhesion properties were prepared by modification of polysiloxane resin (PSil) with a pre-synthesized tailored polyurethane/polyurea copolymer end-capped with siloxane (PU). The modification was achieved by crosslinking the hydroxyl group of PSil and ethoxy group of PU in the presence of di-n-butyltin dilaurate. The chemical structure of PU was analyzed by Fourier Transform Infrared and Hydrogen-1 Nuclear Magnetic Resonance spectroscopic methods. A series of modified silicone resins (MSRs) have been synthesized and investigated. The molecular weights of the resins were determined by means of gel permeation chromatography. The morphology of the MSR studied by scanning electron microscopy has shown that the resin containing 30% of PU has a small particle size and a good particle size distribution. The adhesion and the mechanical properties of the resins containing 20, 30, and 40% of PU have shown a good performance. Using thermogravimetric analysis, the thermal properties and the thermal degradation of the MSR were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, H, Zheng, Z, Song, W, Wang, X, “Moisture-Cured Polyurethane/Polysiloxane Copolymers: Effect of the Structure of Polyester Diol and NCO/OH Ratio.” J. Appl. Polym. Sci., 108 (6) 3644–3651 (2008)

    Article  CAS  Google Scholar 

  2. Yilgor, E, Yilgor, I, “Hydrogen Bonding: A Critical Parameter in Designing Silicone Copolymers.” Polymer, 42 (19) 7953–7959 (2001)

    Article  CAS  Google Scholar 

  3. Sobolevsky, MV, Oligoorganosiloxanes: Properties, Obtaining and Applications. Khimiya, Moscow, 1985

    Google Scholar 

  4. Fichet, O, Vidal, F, Darras, V, Boileau, S, Teyssié, D, “Polysiloxane Based Interpenetrating Polymer Network: Synthesis and Properties.” In: Boileau, S, Boury, B, Ganachaud, F (eds.) Silicon Based Polymers—Advances in Syntheses and Supramolecular Organization, pp. 19–28. Springer, London, 2008

    Google Scholar 

  5. Witucki, GL, “The Evolution of Silicon-Based Technology in Coating.” Dow Corning Corporation, 26 1202–1208 (2003)

    Google Scholar 

  6. Leir, CM, “Telechelic Siloxanes with Hydrogen-Bonded Polymerizable End Groups. I. Liquid Rubbers and Elastomers.” J. Appl. Polym. Sci., 117 (2) 656–756 (2010)

    Article  Google Scholar 

  7. Ionescu, M, Chemistry and Technology of Polyols for Polyurethanes. Rapra Technology Ltd, Shawbury, 2005

    Google Scholar 

  8. Prado, LASA, Sforça, ML, de Oliveira, AG, Yoshida, IVP, “Poly(dimethylsilane) Network Modified with Poly(phenylsilsesquioxanes): Synthesis, Structural Characterization and Evaluation of Thermal Stability and Permeability.” Eur. Polym. J., 44 3080–3086 (2008)

    Article  CAS  Google Scholar 

  9. Ni, H, Simonsick, WJ, Jr, Skaja, AD, Williams, JP, Soucek, MD, “Polyurea/Polysiloxane Ceramer Coatings.” Prog. Org. Coat., 88 (2) 97–110 (2000)

    Article  Google Scholar 

  10. Zhang, C, Zhang, X, Dai, J, Bai, C, “Synthesis and Properties of PDMS Modified Waterborne Polyurethane–Acrylic Hybrid Emulsion by Solvent-Free Method.” Prog. Org. Coat., 63 (2) 238–244 (2008)

    Article  CAS  Google Scholar 

  11. Vlad, S, Vlad, A, Oprea, S, “Interpenetrating Polymer Networks Based on Polyurethane and Polysiloxane.” Eur. Polym. J., 38 829–835 (2002)

    Article  CAS  Google Scholar 

  12. Hill, DJT, Killeen, MI, O’Donnell, JH, Pomery, JP, “Development of Wear-Resistant Thermoplastic Polyurethanes by Blending with Poly(dimethyl siloxane). I. Physical Properties.” J. Appl. Polym. Sci., 61 (10) 1757–1766 (1996)

    Article  CAS  Google Scholar 

  13. Bremner, T, Hill, DJT, Killeen, MI, O’Donnell, JH, Pomery, PJ, “Development of Wear-Resistant Thermoplastic Polyurethanes by Blending with Poly(dimethyl siloxane). II. A Packing Model.” J. Appl. Polym. Sci., 65 (5) 939–950 (1997)

    Article  CAS  Google Scholar 

  14. Lucas, PL, Robin, JJ, “Silicone-Based Polymer Blends: An Overview of Materials and Processes.” Adv. Polym. Sci., 209 111–147 (2007)

    CAS  Google Scholar 

  15. Belorgey, G, Sauvet, G, “Organosiloxane Block and Graft Copolymers.” In: Jones, RG, Ando, W, Chojnowski, J (eds.) Silicon Coating Polymers, pp. 44–78. Kluwer, The Netherlands, 2000

    Google Scholar 

  16. Wagner, M, Wolf, BA, “Effect of Block Copolymer on the Interfacial Tension Between Two ‘Immiscible’ Homopolymers.” Polymer, 34 (7) 1460–1464 (1993)

    Article  CAS  Google Scholar 

  17. Khandpur, AK, Guegan, P, Macosko, CW, “Compatibilizers for A/B Blends: A-C-B Triblock Versus A-B Diblock Copolymers.” SPE Regional Technical Conference on Polymer Alloys and Blends, Polyblends’95, pp. 88–96, Quebec, October 1995

  18. Fleischer, CA, Morales, AR, Koberstein, JT, “Interfacial Modification Through End Group Complexation in Polymer Blends.” Macromolecules, 27 (2) 379–385 (1994)

    Article  CAS  Google Scholar 

  19. Hamurcu, EE, Baysal, BM, “Interpenetrating Polymer Networks of Poly(dimethylsiloxane): 1. Preparation and Characterization.” Polymer, 34 (24) 5163–5167 (1993)

    Article  CAS  Google Scholar 

  20. Turner, J, Cheng, YL, “Process for Preparing Interpenetrating Polymer Networks of Controlled Morphology.” US Patent 6,331,578, 2001

  21. He X, Herz, JE, Mayer, G, Vidmaier, JM, “Preparation of Interpenetrating Acrylic Polymer-Siloxane Networks.” US Patent 5,424,375, 1995

  22. Ebdon, JR, Hourston, DJ, Klein, PG, “Polyurethane–Polysiloxane Interpenetrating Polymer Networks. A Polyether Urethane-Poly(dimethylsiloxane) System.” Polymer, 25 (11) 1079–1085 (1984)

    Article  Google Scholar 

  23. Zhou, P, Xu, Q, Frisch, HL, “Kinetics of Simultaneous Interpenetrating Polymer Networks of Poly(dimethylsiloxane-urethane) Poly(methyl methacrylate) Formation and Studies of Their Phase Morphology.” Macromolecules, 27 (4) 938–946 (1994)

    Article  CAS  Google Scholar 

  24. Bilgrien, CJ, Lee, CL, Mullan, SP, Reese, HH, “Storage-Stable Flowable Organosiloxane Composition Powders and Their Preparation.” US Patent 5,153,238, 1992

  25. Fujiki, M, Furuta, D, Naito, M, “Manufacture of Semi-IPN (Interpenetrating Polymer Network) Composite and the Composite Made of Crosslinkable Siloxane and Radically Polymerized Polymer.” Japan Patent 4263062, 2004

  26. Gilmer, TC, Hall, PK, Ehrenfeld, H, Wilson, K, Bivens, T, Clay, D, Endresz, C, “Synthesis, Characterization and Mechanical Properties of PMMA/Poly(aromatic/aliphatic siloxane) Semi-Interpenetrating Polymer Network.” J. Polym. Sci., 34 (6) 1025–1077 (1996)

    CAS  Google Scholar 

  27. Knaub, P, Camberlin, Y, Gérard, JF, “New Reactive Polymer Blends Based on Poly(urethanes-ureas) (PUR) and Polydisperse Polydimethylsiloxane (PDMS): Control of Morphology Using a PUR-b-PDMS Block Copolymer.” Polymer, 29 (8) 1365–1377 (1988)

    Article  CAS  Google Scholar 

  28. Gross, C, Lee, M, Liao, J, “Thermoplastic Silicone Elastomers from Compatibilized Polyester Resins.” WO Patent 2,003,035,764, 2003

  29. Kahraman, MV, Kugu, M, Menceloglu, Y, Kayaman-Apohan, N, Gungor, A, “The Novel Use of Organo Alkoxy Silane for the Synthesis of Organic–Inorganic Hybrid Coatings.” J. Non-Cryst. Solids, 352 2143–2151 (2006)

    Article  Google Scholar 

  30. Phillip, G, Schmidt, H, “New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol–Gel Process.” J. Non-Cryst. Solids, 63 283–292 (1984)

    Article  Google Scholar 

  31. Chou, TP, Chandrasekeran, C, Limmer, SJ, Seraji, S, Wu, Y, Forbeu, MJ, Nguyen, C, Cao, GZ, “Organic–Inorganic Hybrids Coatings for Corrosion Protection.” J. Non-Cryst. Solids, 290 153–162 (2001)

    Article  CAS  Google Scholar 

  32. Chiang, CL, Ma, CCM, “Synthesis, Characterization and Thermal Properties of Novel Epoxy Containing Silicon and Phosphorus Nanocomposites by Sol–Gel Method.” Eur. Polym. J., 38 (11) 2219–2224 (2002)

    Article  CAS  Google Scholar 

  33. Brinker, CJ, Scherer, GW, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press Inc., San Diego, 1990

    Google Scholar 

  34. Pierre, AC, Introduction to Sol–Gel Processing. Kluwer, Boston, 1998

    Book  Google Scholar 

  35. Wang, L, Shen, Y, Lai, X, Li, Z, Liu, M, “Synthesis and Properties of Cross-linked Waterborne Polyurethane.” J. Polym. Res., 18 (3) 469–476 (2010)

    Article  Google Scholar 

  36. Sheth, JP, Aneja, A, Wilkes, GL, Yilgor, E, Atilla, GE, Yilgor, I, Beyer, FL, “Influence of System Variables on the Morphological and Dynamic Mechanical Behavior of Polydimethylsiloxane Based Segmented Polyurethane and Polyurea Copolymers: A Comparative Perspective.” Polymer, 45 (20) 6919–6932 (2004)

    Article  CAS  Google Scholar 

  37. Shea, KJ, Loy, DA, “Bridged Polysilsesquioxanes. Molecular-Engineering Hybrid Organic–Inorganic Materials.” Chem. Mater., 13 (10) 3306–3319 (2001)

    Article  CAS  Google Scholar 

  38. Chattopadhyay, DK, Raju, KVSN, “Structural Engineering of Polyurethane Coating for High Performance Applications.” Prog. Polym. Sci., 32 (3) 352–418 (2007)

    Article  CAS  Google Scholar 

  39. Thurn, F, Wolff, S, “Neue Organosilane für die Reifenindustrie.” Kautsch. Gummi Kunstst., 28 733–739 (1975)

  40. Mazurek, MH, “Silicones.” In: Crabtree, RH, MIngos, DMP (eds.) Comprehensive. Organometallic Chemistry, vol. 3, pp. 651–697. Elsevier, Amsterdam, 2007

  41. Jia, M, Wu, C, Li, W, Gao, D, “Synthesis and Characterization of Silicon Resin with Silphenylene Units in Si–O–Si Backbones.” J. Appl. Polym. Sci., 114 (2) 971–977 (2009)

    Article  CAS  Google Scholar 

  42. Drinberg, AS, Ytsko, EF, Kalinskaya, TV, Anti-Corrosion Primers. Niproins LKM, Saint-Petersburg, 2006 (in Russian)

  43. Brandrup, J, Immergut, EH, The Polymer Handbook, 3rd ed. John Wiley and Sons, New York, 1989

    Google Scholar 

  44. Rosen, SL, Fundamental Principle of Polymeric Materials, 2nd ed. Wiley, New York, 1993

    Google Scholar 

  45. Luo, YJ, Gui, HX, Silicone Resins and Their Applications. Chemical Industry Press, Beijing, 2001

    Google Scholar 

  46. Krol, P, Linear Polyurethanes: Synthesis methods, Chemical Structures. Properties and Applications, Leiden-Boston, 2008

    Google Scholar 

  47. Tarutina, LI, Pozdnyakova, FO, Spectral Analysis of Polymers. Khimya, Leningrad, 1986

    Google Scholar 

  48. Mistry, BD, A Handbook of Spectroscopic Data—Chemistry (UV, IR, PRM, 13CNMR and Mass Spectroscopy). Company OB, Jaipur, India, 2009

    Google Scholar 

  49. Belenky, BG, Vilenchik, LZ, Chromatography of Polymers. Khimya, Moscow, 1978

    Google Scholar 

  50. Korshak, VV, Thermal Resistant Polymers. Nauka, Moscow (1969)

    Google Scholar 

  51. Nguyen, D, Chambon, P, Rosselgong, J, Cloutet, E, Gramail, H, Ravaine, S, “Simple Route to Get Very Hydrophobic Surfaces of Fibrous Materials with Core–Shell Latex Particles.” J. Appl. Polym. Sci., 108 (5) 2772–2777 (2008)

    Article  CAS  Google Scholar 

  52. Hillmyer, MA, Lodge, TP, “Synthesis and Self-assembly of Fluorinated Block Copolymers.” J. Polym. Sci., 40 (1) 1–8 (2002)

    CAS  Google Scholar 

  53. Jenekhe, SA, Chen, XL, “Self-assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers.” Science, 283 372–375 (1999)

    Article  CAS  Google Scholar 

  54. Olsen, BD, Segalman, RA, “Self-assembly of Rod-Coil Block Copolymers.” Mater. Sci. Eng. R: Reports, 62 (2) 37–66 (2008)

    Article  Google Scholar 

  55. Luzinov, I, Minko, S, Tsukruk, VV, “Adaptive and Responsive Surfaces Through Controlled Reorganization of Interfacial Polymer Layers.” Prog. Polym. Sci., 29 635–698 (2004)

    Article  CAS  Google Scholar 

  56. Joki-Korpela, F, Pakkaren, TT, “Incorporation of Polydimethylsiloxane into Polyurethanes and Characterization of Copolymers.” Eur. Polym. J., 47 1694–1708 (2011)

    Article  CAS  Google Scholar 

  57. De, PP, Roy, NC, Dutta, NK, Thermal Analysis of Rubbers and Rubbery Materials. Rapra Technology Ltd, Shawbury, 2010

    Google Scholar 

  58. Pielichowski, K, Njuguna, J, Thermal Degradation of Polymer Materials. Rapra Technology Ltd, Shawbury, 2005

    Google Scholar 

  59. Pielichowski, K, Janowski, B, “Semi-Inter Penetrating Polymer Networks of Polyurethane and Poly(vinyl Chloride). Thermal Stability Assessment.” J. Therm. Anal. Cal., 80 147–151 (2005)

    Article  CAS  Google Scholar 

  60. Chuang, F-S, Tsia, H-Y, Chow, J-D, Tsen, W-C, Shu, Y-C, Jang, S-C, “Thermal Degradation of Poly(siloxane-urethane) Copolymers.” Polym. Degrad. Stab., 93 1753–17761 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qiu Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, A.M., Tamboura, M. & Jia, M.Q. Synthesis, characterization, and analyses of mechanical, adhesion, and thermal properties of polysiloxane resin modified with segmented polyurethane. J Coat Technol Res 10, 97–108 (2013). https://doi.org/10.1007/s11998-012-9424-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9424-8

Keywords

Navigation