Skip to main content
Log in

Antioxidant Activities of Hydrolysates from Abalone Viscera Using Subcritical Water-Assisted Enzymatic Hydrolysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Antioxidant hydrolysates were prepared from abalone viscera using subcritical water (AVS)-assisted by enzymatic hydrolysis with papain (AVSE-P), bromelain (AVSE-B), neutral protease (AVSE-N), and flavourzyme (AVSE-F). The protein and carbohydrate contents reached 38.33% and 24.36%, respectively. When AVS was digested by any of the proteases, the protein content increased, but carbohydrate content decreased. The main amino acids of AVSEs included alanine, glycine, and aspartic acid. The IC50 values of ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)•+, N,N-Dimethyl-p-phenylenediamine dihydrochloride (DMPD)•+, and hydroxyl radical (OH) scavenging abilities of AVS were 2.93, 1.48, 1.61, 3.72, and 5.51 mg/mL, respectively, which decreased after enzymatic hydrolysis by any of the proteases. The DMPD•+ and OH scavenging abilities of AVSE-P and AVSE-B were higher than those of others, whereas the opposite was observed in lipid peroxidation inhibition efficiency, DPPH, and ABTS•+ scavenging abilities. Hence, antioxidant activities of AVS could be enhanced by enzymatic hydrolysis, but the influence depends on the type of protease. At the same time, results also suggest that the proposed approach can be used for treating abalone viscera, and the obtained antioxidant hydrolysates could be used in nutraceutical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdollahi, M., & Undeland, I. (2018). Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products. Food and Bioprocess Technology, 11(9), 1733–1749.

    Article  CAS  Google Scholar 

  • Ahmed, R., & Chun, B. S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. Journal of Supercritical Fluids, 11, 1–9.

    Google Scholar 

  • Ahn, C. B., Lee, K. H., & Je, J. Y. (2010). Enzymatic production of bioactive protein hydrolysates from tuna liver: effects of enzymes and molecular weight on bioactivity. International Journal of Food Science and Technology, 45(3), 562–568.

    Article  CAS  Google Scholar 

  • AOAC. (2005). Official methods of analysis of International (18th ed.). Gaithersburg: MD: Association of Official Analytical Chemists International.

    Google Scholar 

  • Asghar, M. N., Khan, I. U., Arshad, M. N., & Sherin, L. (2007). Evaluation of antioxidant activity using an improved dmpd radical cation decolorization assay. Acta Chimica Slovenica, 54(2), 295–300.

    CAS  Google Scholar 

  • Bamdad, F., Wu, J., & Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science, 54(1), 20–28.

    Article  CAS  Google Scholar 

  • Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706–6714.

    Article  CAS  Google Scholar 

  • Chen, S., Tang, L., Su, W., Weng, W., Osako, K., & Tanaka, M. (2015). Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration. Food Chemistry, 188, 350–356.

    Article  CAS  Google Scholar 

  • Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015a). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12, 1–10.

    Article  Google Scholar 

  • Chi, C. F., Hu, F. Y., Wang, B., Ren, X. J., Deng, S. G., & Wu, C. W. (2015b). Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chemistry, 168, 662–667.

    Article  CAS  Google Scholar 

  • Dávalos, A., Miguel, M., Bartolomé, B., & Lopez-Fadiño, R. (2004). antioxidant activitybof peptidesvderived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection, 67(9), 1939–1944.

    Article  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Gülçin, I. (2010). Antioxidant properties of resveratrol: a structure-activity insight. Innovative Food Science and Emerging Technologies, 11(1), 210–218.

    Article  Google Scholar 

  • Guo, P., Qi, Y., Zhu, C., & Wang, Q. (2015). Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl.) seeds. Journal of Functional Foods, 19, 394–403.

    Article  CAS  Google Scholar 

  • He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219–227.

    Article  CAS  Google Scholar 

  • Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5), 840–846.

    Article  CAS  Google Scholar 

  • Je, J. Y., Park, S. Y., Hwang, J. Y., & Ahn, C. B. (2015). Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate. Journal of Functional Foods, 16, 94–103.

    Article  CAS  Google Scholar 

  • Jo, E. K., Heo, D. J., Kim, J. H., Lee, Y. H., Ju, Y. C., & Lee, S. C. (2013). The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom. Food and Bioprocess Technology, 6(9), 2555–2561.

    Article  CAS  Google Scholar 

  • Khantaphant, S., Benjakul, S., & Kishimura, H. (2011). Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases. Process Biochemistry, 46(1), 318–327.

    Article  CAS  Google Scholar 

  • Klompong, V., Benjakul, S., Yachai, M., Visessanguan, W., Shahidi, F., & Hayes, K. D. (2009). Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science, 74(2), 126–133.

    Article  Google Scholar 

  • Kondo, F., Ohta, T., Iwai, T., Ido, A., Miura, C., & Miura, T. (2017). Effect of the squid viscera hydrolysate on growth performance and digestion in the red sea bream Pagrus major. Fish Physiology and Biochemistry, 43(3), 1–13.

    Google Scholar 

  • Li, X., Lin, J., Gao, Y., Han, W., & Chen, D. (2012). Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal, 6(1), 140–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. R., Li, W. G., Chen, L. F., Xiao, B. K., Yang, J. Y., Zhang, C. G., Huang, R. Q., & Dong, J. X. (2014). ABTS+ scavenging potency of selected flavonols from Hypericum perforatum L. by HPLC-ESI/MS QQQ: reaction observation, adduct characterization and scavenging activity determination. Food Research International, 58, 47–58.

    Article  CAS  Google Scholar 

  • Ovissipour, M., Kenari, A. A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (thunnus albacares). Food and Bioprocess Technology, 5(2), 696–705.

    Article  CAS  Google Scholar 

  • Pan, X., Zhao, Y. Q., Hu, F. Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220–230.

    Article  Google Scholar 

  • Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. TRAC Trends in Analytical Chemistry, 71, 39–54.

    Article  CAS  Google Scholar 

  • Qu, W., Ma, H., Liu, B., He, R., Pan, Z., & Abano, E. E. (2013). Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrasonics Sonochemistry, 20(6), 1408–1413.

    Article  CAS  Google Scholar 

  • Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. Journal of Nutritional Biochemistry, 16(9), 562–569.

    Article  CAS  Google Scholar 

  • Rodríguez-Nogales, J. M., Vila-Crespo, J., & Gómez, M. (2011). Development of a rapid method for the determination of the antioxidant capacity in cereal and legume milling products using the radical cation DMPD. Food Chemistry, 129(4), 1800–1805.

    Article  Google Scholar 

  • Rogalinski, T., Herrmann, S., & Brunner, G. (2005). Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. Journal of Supercritical Fluids, 36(1), 49–58.

    Article  CAS  Google Scholar 

  • Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K. D., & Prinyawiwatkul, W. (2003). Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science, 68(7), 2196–2200.

    Article  CAS  Google Scholar 

  • Sereewatthanawut, I., Prapintip, S., Watchiraruji, K., Goto, M., Sasaki, M., & Shotipruk, A. (2008). Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 99(3), 555–561.

    Article  CAS  Google Scholar 

  • Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems: a review. Journal of Functional Foods, 21, 10–26.

    Article  CAS  Google Scholar 

  • Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. (1997). Antioxidant activities of some extracts of Thymus zygis. Free Radical Research, 26(5), 469–478.

    Article  CAS  Google Scholar 

  • Song, R., Ismail, M., Baroutian, S., & Farid, M. (2018). Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food and Bioprocess Technology, 11(10), 1895–1903.

    Article  CAS  Google Scholar 

  • Suleria, H. A. R., Masci, P. P., Addepalli, R., Chen, W., Gobe, G. C., & Osborne, S. A. (2017). In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate. Analytical and Bioanalytical Chemistry, 409(17), 4195–4205.

    Article  CAS  Google Scholar 

  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342.

    Article  CAS  Google Scholar 

  • Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138–1146.

    Article  CAS  Google Scholar 

  • Viana, M. T., D’Abramo, L. R., Gonzalez, M. A., García-Suárez, J. V., Shimada, A., & Vásquez-Peláez, C. (2007). Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture, 264(1-4), 323–329.

    Article  CAS  Google Scholar 

  • Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., & Xu, Y. F. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2-3), 1713–1719.

    Article  CAS  Google Scholar 

  • Wang, Q., Li, W., He, Y., Ren, D., Kow, F., Song, L., & Yu, X. (2014). Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chemistry, 145, 991–996.

    Article  CAS  Google Scholar 

  • Weng, W., Tang, L., Wang, B., Chen, J., Su, W., Osako, K., & Tanaka, M. (2014). Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates. Journal of Functional Foods, 11(C), 342–351.

    Article  CAS  Google Scholar 

  • Zhou, D. Y., Zhu, B. W., Qiao, L., Wu, H. T., Li, D. M., Yang, J. F., & Murata, Y. (2012). In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90(2), 148–154.

    Article  CAS  Google Scholar 

  • Zhu, L., Jie, C., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714–2721.

    Article  CAS  Google Scholar 

Download references

Funding

This work is sponsored by National Natural Science Fund (31571835), Special Scientific Research Fund of Marine Public Welfare (201405016), and Xiamen Science and Technology Project (3502Z20173032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyin Weng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P., Hao, G., Weng, W. et al. Antioxidant Activities of Hydrolysates from Abalone Viscera Using Subcritical Water-Assisted Enzymatic Hydrolysis. Food Bioprocess Technol 12, 910–918 (2019). https://doi.org/10.1007/s11947-019-02270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02270-6

Keywords

Navigation