Skip to main content

Advertisement

Log in

Enrichment of Banana with Lactobacillus rhamnosus Using Double Emulsion and Osmotic Dehydration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to use the process of osmotic dehydration to enrich banana slices with Lactobacillus rhamnosus encapsulated in a double emulsion. The effect of a pulsed vacuum and the concentration of the osmotic solution on the impregnation of the microorganism and on mass transfer during osmotic dehydration of the fruit were assessed. The kinetics of the water loss (WL), solid gain (SG) and water activity (aw) were obtained using an aqueous solution with 40, 50 and 60% sucrose with emulsion and a vacuum pulse of 50 mbar for 10 and 20 min at the beginning of the osmotic process. The high concentrations of sucrose in the osmotic solution, combined with the application of a pulsed vacuum, produced an increase in the rates of WL and SG of the osmodehydrated banana, as well as a reduction of its aw. L. rhamnosus survived at levels above 107 CFU/g in the hypertonic solution and in the osmodehydrated bananas. Scanning electron microscopy (SEM) showed that the encapsulated probiotic adheres to the banana’s surface, which demonstrates that double emulsions can be used to impregnate probiotics in vegetal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alzamora, S. M., Salvatori, D., Tapia, M. S., López-Malo, A., Welti-Chanes, J., & Fito, P. (2005). Novel functional foods from vegetable matrices impregnated with biologically active compounds. Journal of Food Engineering, 67, 205–214.

    Article  Google Scholar 

  • Atares, L., Gallagher, M. S., & Oliveira, F. A. R. (2011). Process conditions effect on the quality of banana osmotically dehydrated. Journal of Food Engineering, 103, 401–408.

    Article  Google Scholar 

  • Azuara, E., Cortes, R., García, H., & Beristain, C. (1992). Kinetic model for osmotic dehydration and its relationship with Fick’s second law. International Journal of Food Science and Technology, 27, 409–418.

    Article  CAS  Google Scholar 

  • Barat, J. M. E., Chiralt, A., & Fito, P. (1998). Equilibrium in cellular food osmotic solution systems as related to structure. Journal of Food Science, 63, 836–840.

    CAS  Google Scholar 

  • Bchir, B., Besbes, S., Karoui, R., Paquot, M., Attia, H., & Blecker, C. (2012). Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solute base. Food and Bioprocess Technology, 5, 999–1009.

    Article  CAS  Google Scholar 

  • Beristain, C. I., Azuara, E., Cortés, R., & García, H. S. (1990). Mass transfer during the osmotic dehydration of pineapple rings. International Journal of Food Science and Technology, 25, 576–582.

    Article  Google Scholar 

  • Betoret, N., Puente, L., Dıaz, M. J., Pagán, M. J., Garcıa, M. J., Gras, M. L., Martínez-Monzo, J., & Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56, 273–277.

    Article  Google Scholar 

  • Binns, C., & Lee, M. K. (2010). The use of probiotics to prevent diarrhea in young children attending child care centers: a review. J. Exp. Clin. Med., 2, 269–273.

    Article  Google Scholar 

  • Brown-Esters, O., Mc Namara, P., & Savaiano, D. (2012). Dietary and biological factors influencing lactose intolerance. International Dairy Journal, 22, 98–103.

    Article  CAS  Google Scholar 

  • Camirand, W., Krochta, J. M., Pavlath, A. E., Wong, D., & Cole, M. E. (1992). Properties of some edible carbohydrate polymer coatings for potential use in osmotic dehydration. Carbohydrate Polymers, 17, 39–49.

    Article  Google Scholar 

  • Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67, 167–177.

    Article  Google Scholar 

  • Corrêa, J. L. G., Ernesto, D. B., Alves, J. G. L. F., & Andrade, R. S. (2014). Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin. International Journal of Food Science and Technology, 49, 2008–2014.

    Article  Google Scholar 

  • Corrêa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96, 498–504.

    Article  Google Scholar 

  • Dave, R. I., & Shah, N. P. (1997). Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int. Dairy J. (Oxford), 7, 435–443.

    Article  CAS  Google Scholar 

  • Deng, Y., & Zhao, Y. (2008). Effects of pulsed-vacuum and ultrasound on the osmodehydration kinects and microstructure of apples (Fuji). Journal of Food Engineering, 1, 84–93.

    Article  Google Scholar 

  • Derossi, A., Severini, C., Del Mastro, A., & De Pilli, T. (2015). Study and optimization of osmotic dehydration of cherry tomatoes in complex solution by response surface methodology and desirability approach. LWT-Food Sci. Technol., 60, 641–648.

    Article  CAS  Google Scholar 

  • El-Aouar, Â. A., Azoubel, P. M., Barbosa, J. L., & Xidieh Murr, F. E. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering, 75, 267–274.

    Article  CAS  Google Scholar 

  • Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985.

    Article  Google Scholar 

  • Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.

    Article  Google Scholar 

  • Fito, P., Andrés, A., Chiralt, A., & Pardo, P. (1996). Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering, 27, 229–240.

    Article  Google Scholar 

  • Flores-Andrade, E., Pascual-Pineda, L. A., Jiménez, M., & Beristain, C. I. (2013). Efecto de la proteína de suero de leche-sacarosa en la deshidratación osmótica de manzana. Rev. Mexicana Ing. Quimica, 12, 415–424.

    CAS  Google Scholar 

  • Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A., & Bimakr, M. (2012). Kinetics modeling of mass transfer using Peleg’s equation during osmotic dehydration of seedless guava (Psidium guajava L.): effect of process parameters. Food and Bioprocess Technology, 5, 2151–2159.

    Article  Google Scholar 

  • García, M., Díaz, R., Martínez, Y., & Casariego, A. (2010). Effects of chitosan coating on mass transfer during osmotic dehydration of papaya. Food Research International, 43, 1656–1660.

    Article  Google Scholar 

  • Garti, N. (1997). Progress in stabilization and transport phenomena of doble emulsions in food applications. LWT—Food Science and Technology, 30, 222–235.

    CAS  Google Scholar 

  • Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43, 2402–2408.

    Article  CAS  Google Scholar 

  • Homayouni, A., Ehsani, M. R., Azizi, A., Razavi, S. H., & Yarmand, M. S. (2008). Growth and survival of some probiotic strains in simulated ice cream conditions. Journal of Applied Sciences, 8, 379–382.

    Article  Google Scholar 

  • Huang, Y., Wang, X., Wang, J., Wu, F., Sui, Y., Yang, L., & Wang, Z. (2013). Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. Journal of Dairy Science, 96, 2746–2753.

    Article  CAS  Google Scholar 

  • Íspir, A., & Togrul, Í. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87, 166–180.

    Article  Google Scholar 

  • Jayaprakasha, H.M., Jayaraj Rao, K.J., Kumar, L., W.A.L., 1997. Studies on the influence of water activity (aw) on the stability of foods—a critical appraisal. Journal of Food Science and Technology 34, 273–285.

  • Kailasapathy, K., & Rybka, S. (1997). L. acidophilus and Bifodobacterium spp.—their therapeutic potential and survival in yogurt. Australian Journal of Dairy Technology, 52, 28–35.

    Google Scholar 

  • Khin, M. M., Zhou, W., & Perera, C. O. (2007). Impact of process conditions and coatings on the dehydration efficiency and cellular structure of apple tissue during osmotic dehydration. Journal of Food Engineering, 79, 817–827.

    Article  CAS  Google Scholar 

  • Lewicki, P. P., & Lenart, A. (1995). Osmotic dehydration of fruits and vegetables. In A. S. Mujumdar (Ed.), Handbook of industrial drying (pp. 691–713). New York: Marcel Dekker.

    Google Scholar 

  • Lourens-Hattingh, A., & Viljoen, B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11, 1–17.

    Article  Google Scholar 

  • Maguiña, G., Tapia, M.S., Briceño, A.G., Rodriguez, C., Sanchez, D., Roa, V., López, A., 2002. Incorporación of Bifidobacterium ssp. En una matriz porosa de fruta por el mecanismo hidrodinámico. In: Actas del 2° Congreso Español de Ingeniería de Alimentos. Lleida, España, Universitad de Lleida, pp. 1–4.

  • Martins de Oliveira, P., Castro, B. R., Lopes, M., Furtado, E. M., & Mota, A. (2014). Minimally processed yellow melon enriched with probiotic bacteria. Semina: Ciências Agrárias, 35, 2415–2426.

    Google Scholar 

  • Mújica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E., & Welti-Chanes, J. (2003a). Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering, 57, 305–314.

    Article  Google Scholar 

  • Mújica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E., & Welti-Chanes, J. (2003b). Impregnation properties of some fruits at vacuum pressure. Journal of Food Engineering, 56, 307–314.

    Article  Google Scholar 

  • Muñoz-Salas, K., & Alarcón-Palacios, M. (2010). Efecto de los probióticos en las condiciones periodontales. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 3, 136–139.

    Article  Google Scholar 

  • Panarese, V., Dejmek, P., Rocculi, P., & Gómez, G. F. (2013). Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science & Emerging Technologies, 18, 169–176.

    Article  Google Scholar 

  • Pande, R., Bagad, M., Dubey, V., & Ghosh, A. R. (2012). Prospectus of probiotics in modern age diseases. Asian Pac. J. Trop. Biomed., 2, S1963–S1974.

    Article  Google Scholar 

  • Parra, R. A. (2012). Yogurt en la salud humana. Rev. Lasallista Investigación, 8, 162–177.

    Google Scholar 

  • Pimentel-González, D. J., Campos-Montiel, R. G., Lobato-Calleros, C., Pedroza-Islas, R., & Vernon-Carter, E. J. (2009). Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Research International, 42, 292–297.

    Article  Google Scholar 

  • Ramírez, J. C., Rosas, P., Velázquez, M. Y., Armando, J., & Arce, F. (2011). Bacterias lácticas: Importancia en alimentos y sus efectos en la salud. Revista Fuente, 2, 1–16.

    Google Scholar 

  • Ribeiro, C., Freixo, R., Silva, J., Gibbs, P., Morais, A. M. M. B., & Texeira, P. (2014). Dried fruit matrices incorporated with a probiotic strain of Lactobacillus plantarum. Int. J Food Stud., 3, 69–73.

    Article  Google Scholar 

  • Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27, 1–11.

    Article  Google Scholar 

  • Rodríguez-Huezo, M. E., Estrada-Fernández, A. G., García-Almendárez, B. E., Ludeña-Urquizo, F., Campos-Montiel, R. G., & Pimentel-González, D. J. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT—Food Sci. Technol., 59, 768–773.

    Google Scholar 

  • Rößle, C., Auty, M. A. E., Brunton, N., Gormley, R. T., & Butler, F. (2010). Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innov. Food Sci. Emerg. Technol., 11, 203–209.

    Article  Google Scholar 

  • Ruíz-López, I. I., Ruíz-Espinoza, H., Herman-Lara, E., & Zárate-Castillo, G. (2011). Modeling of kinetics, equilibrium and distribution data of osmotically dehydrated carambola (Averrhoa carambola L.) in sugar solutions. Journal of Food Engineering, 104, 218–226.

    Article  Google Scholar 

  • Russo, P., de Chiara, M. L., Vernile, A., Amodio, M. L., Arena, M. P., Capozzi, V., Massa, S., & Spano, G. (2014). Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. BioMed Research International, 2014, 309183.

    Google Scholar 

  • Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., & El-Nezami, H. (2010). Interaction of probiotics and pathogens—benefits to human health? Current Opinion in Biotechnology, 21, 157–167.

    Article  CAS  Google Scholar 

  • Shima, M., Matsuo, T., Yamashita, M., & Adachi, S. (2009). Protection of Lactobacillus acidophilus from bile salts in a model intestinal juice by incorporation into the inner-water phase of a W/O/W emulsion. Food Hydrocolloids, 23, 281–285.

    Article  CAS  Google Scholar 

  • Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26, 59–68.

    Article  Google Scholar 

  • Tuo, Y., Zhang, W., Zhang, L., Ai, L., Zhang, Y., Han, X., & Yi, H. (2013). Study of probiotic potential of four wild Lactobacillus rhamnosus strains. Anaerobe, 21, 22–27.

    Article  CAS  Google Scholar 

  • Viana, A. D., Corrêa, J. L. G., & Jusrus, A. (2014). Optimization of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. International Journal of Food Science and Technology, 49, 726–732.

    Article  CAS  Google Scholar 

  • Wadher, K., Mahore, J. G., & Umekar, M. J. (2010). Probiotics: living medicines in health maintenance and disease prevention. Int. J. Pharma Bio. Sci., 1, 1–9.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Council of Science and Technology (CONACYT), the Institutional Trust (FIDEICOMISO Num. 167304), Research Subdirectorate of Campus Córdoba, the Institutional added-value research project (LPI-12) of the Colegio de Postgraduados and the Chemical Science Faculty of the Universidad Veracruzana for the facilities and funding support provided in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Contreras-Oliva.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerta-Vera, K., Flores-Andrade, E., Pérez-Sato, J.A. et al. Enrichment of Banana with Lactobacillus rhamnosus Using Double Emulsion and Osmotic Dehydration. Food Bioprocess Technol 10, 1053–1062 (2017). https://doi.org/10.1007/s11947-017-1879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1879-2

Keywords

Navigation