Skip to main content

Advertisement

Log in

Green Banana (Musa cavendishii) Osmotic Dehydration by Non-Caloric Solutions: Modeling, Physical-Chemical Properties, Color, and Texture

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Osmotic dehydration effects on the kinetics and on some quality attributes of green banana slices (Musa cavendishii) at 25 °C with non-caloric solutes (glycerol, sorbitol, and a mixture of both) at concentrations varying from 40 to 60 g/100 g for up to 6 h were studied. The three-component diagram showed that the first pseudo-equilibrium was achieved, and the water pseudo-diffusion coefficient presented higher values with glycerol solutions. A modified Peleg’s model was applied to obtain the maximum water loss. Changes in green banana physical-chemical properties were observed: moisture content from 1.25 to 0.19 kg/kg dry basis, soluble solute content from 5.4 to 16.9 °Brix; total color-difference from 2.7 to 15.8; and the maximum biaxial extensional viscosity from 0.63 to 1.53 MPa s. Moreover, the obtained low chroma difference values suggest that the osmotically drying process may be a suitable technique to preserve the final color of green banana slices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aminzadeh, R., Sargolzaei, J., & Abarzani, M. (2012). Preserving melons by osmotic dehydration in a ternary system followed by air-drying. Food and Bioprocess Technology, 5, 1305–1316.

    Article  CAS  Google Scholar 

  • ANVISA Agência Nacional de Vigilância Sanitária. (2010). Aditivos alimentares autorizados para uso segundo as Boas Práticas de Fabricação (BPF). RDC n° 45.

  • AOAC (2007). International official methods of analysis of AOAC. Gaithersburg: Association of Official Analytical Chemists.

    Google Scholar 

  • ASTM—American Society for Testing and Materials (2014). ASTM Standard D2244-14. Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. West Conshohocken: ASTM International.

    Google Scholar 

  • Atares, L., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2011). Process conditions effect on the quality of banana osmotically dehydrated. Journal of Food Engineering, 103, 401–408.

    Article  Google Scholar 

  • Azarpazhooh, E., & Ramaswamy, H. S. (2010). Evaluation of diffusion and Azuara models for mass transfer kinetics during microwave-osmotic dehydration of apples under continuous flow medium-spray conditions. Drying Technology, 28, 57–67.

    Article  CAS  Google Scholar 

  • Azoubel, P. M., & Murr, F. E. X. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61, 291–295.

    Article  Google Scholar 

  • Barat, J. M., Alvarruiz, A., Chiralt, A., & Fito, P. (1997). A mass transfer modelling in osmotic dehydration. In Proceedings of the Seventh International Congress on Engineering and Food. Brighton: ICEF.

    Google Scholar 

  • Chenlo, F., Moreira, R., Fernandez-Herrero, C., & Vázquez, G. (2006). Mass transfer during osmotic dehydration of chestnut using sodium chloride solutions. Journal of Food Engineering, 73, 164–173.

    Article  CAS  Google Scholar 

  • Chiralt, A., Martínez-Navarrete, N., Martínez-Monzo, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes: cryoprotectant effect. Journal of Food Engineering, 49, 129–135.

    Article  Google Scholar 

  • FDA Food and Drug Administration. (2011). CFR - Code of Federal Regulations. Title 21-Food and Drugs. Chapter 1, Food and Drugs Administration. Subchapter B, Part 182—Substances generally recognized as safe. Section 182.1320. Glycerin.

  • Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.

    Article  Google Scholar 

  • Fernando, W. J. N., Low, H. C., & Ahmad, A. L. (2011). Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. Journal of Food Engineering, 102, 310–316.

    Article  Google Scholar 

  • Ferrari, C. C., Arballo, J. R., Mascheroni, R. H., & Hubinger, M. D. (2011). Modeling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. International Journal of Food Science & Technology, 46, 436–443.

    Article  CAS  Google Scholar 

  • Fito, P., & Chiralt, A. (1996). Osmotic dehydration an approach to the modeling of solid food-liquid operations. In P. Fito & E. Ortega-Rodriguez (Eds.), Food Engineering 2000. New York: Springer.

    Google Scholar 

  • Hofsetz, C. C. L., Hubinger, M. D., Mayor, L., & Sereno, A. M. (2007). Changes in the physical properties of bananas on applying HTST pulse during air-drying. Journal of Food Engineering, 83, 531–540.

    Article  Google Scholar 

  • Ispir, A., & Togrul, I. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87, 166–180.

    Article  CAS  Google Scholar 

  • Izidoro, D. R., Sierakowski, M. R., Haminiukc, C. W. I., Souza, C. F., & Scheer, A. P. (2011). Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. Journal of Food Engineering, 104, 639–648.

    Article  CAS  Google Scholar 

  • Langkilde, A. M., Cham, M., & Andersson, H. (2002). Effects of high-resistant-starch banana flour (RS2) on in vitro fermentation and the small-bowel excretion of energy nutrients, and sterols: an ileostomy study. American Journal of Clinical Nutrition, 75, 104–111.

    CAS  Google Scholar 

  • Lazarides, H. N., Fito, P., Chiralt, A., Gekas, V., & Lenart, A. (1999). Advances in osmotic dehydration. In F. A. R. Oliveira & J. C. Oliveira (Eds.), Processing of foods: quality optimization and process assessments in conventional and emerging technologies. Boca Raton: CRC Press.

    Google Scholar 

  • Mansueto, P., Seidita, A., D’Alcamo, A., & Carroccio, A. (2015). Role of FODMAPs in patients with irritable bowel syndrome. Nutrition in Clinical Practice, 30, 665–682.

    Article  CAS  Google Scholar 

  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71–78.

    Article  Google Scholar 

  • Mavroudis, N. E., Gidley, M. J., & Sjöholm, I. (2012). Osmotic processing: effects of osmotic medium composition on the kinetics and texture of apple tissue. Food Research International, 48, 839–847.

    Article  CAS  Google Scholar 

  • Mayor, L., Cunha, R. L., & Sereno, A. M. (2007a). Relation between mechanical properties and structural changes during osmotic dehydration of pumpkin. Food Research International, 40, 448–460.

    Article  CAS  Google Scholar 

  • Mayor, L., Moreira, R., Chenlo, F., & Sereno, A. M. (2007b). Osmotic dehydration kinetics of pumpkin fruits using ternary solutions of sodium chloride and sucrose. Drying Technology, 25, 1749–1758.

    Article  CAS  Google Scholar 

  • Mercali, G. D., Marczak, L. D. F., Tessaro, I. C., & Norena, C. P. Z. (2011). Osmotic dehydration of banana (Musa sapientum, shum.) in ternary aqueous solutions of sucrose and sodium chloride. Journal of Food Process Engineering, 35, 149–165.

    Article  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Vázquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT - Food Science and Technology, 49, 1507–1514.

    Article  Google Scholar 

  • Moreira, R., Chenlo, F., Chaguri, L., & Mayor, L. (2010). Analysis of chestnut cellular tissue during osmotic dehydration, air drying, and rehydration processes. Drying Technology, 29, 10–18.

    Article  Google Scholar 

  • Moreno, J., Simpson, R., Sayas, M., Segura, I., Aldana, O., & Almonacid, S. (2011). Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham’s triumph). Journal of Food Engineering, 104, 621–627.

    Article  Google Scholar 

  • Ochoa-Martínez, C. I., Ramaswamy, H. S., & Ayala-Aponte, A. A. (2009). Suitability of Crank’s solutions to Fick’s second law for water diffusivity calculation and moisture loss prediction in osmotic dehydration of fruits. Journal of Food Process Engineering, 32, 933–943.

    Article  Google Scholar 

  • Peleg, M. (1988). An empirical-model for the description of moisture sorption curves. Journal of Food Science, 53, 1216–1219.

    Article  Google Scholar 

  • Porciuncula, B. D. A., Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 119, 490–496.

    Article  Google Scholar 

  • Raikham, C., Prachayawarakorn, S., Nathakarakule, A., & Soponronnarit, S. (2015). Influences of pretreatment and drying process including fluidized bed puffing on quality attributes and microstructural changes of banana slices. Drying Technology, 33, 915–925.

    Article  Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., & Niranjan, K. (1997). Mass transfer during osmotic dehydration of banana: Fickian diffusion in cylindrical configuration. Journal of Food Engineering, 31, 423–432.

    Article  Google Scholar 

  • Ruiz-López, I. I., Ruiz-Espinosa, H., Hernan-Lara, E., & Zárate-Castillo, G. (2011). Modeling of kinetics, equilibrium and distribution data of osmotically dehydrated carambola (Averrhoa carambola L.) in sugar solutions. Journal of Food Engineering, 104, 218–226.

    Article  Google Scholar 

  • Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose-salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49, 163–173.

    Article  Google Scholar 

  • Silva, W. P., Silva, C. M. D. P. S., & Gomes, J. P. (2013). Drying description of cylindrical pieces of bananas in different temperatures using diffusion models. Journal of Food Engineering, 117, 417–424.

    Article  Google Scholar 

  • Simpson, R., Ramírez, C., Birchmeier, V., Almonacid, A., Moreno, J., Nunez, H., & Jaques, A. (2015). Diffusion mechanisms during the osmotic dehydration of Granny Smith apples subjected to a moderate electric field. Journal of Food Engineering, 166, 204–211.

    Article  Google Scholar 

  • Sirousazar, M., Mohammadi-Doust, A., & Achachlouei, B. F. (2009). Mathematical investigation of the effects of slicing on the osmotic dehydration of sphere and cylinder shaped fruits. Czech Journal of Food Sciences, 27, 95–101.

    Google Scholar 

  • Souraki, B. A., Ghavami, M., & Tondro, H. (2014). Correction of moisture and sucrose effective diffusivities for shrinkage during osmotic dehydration of apple in sucrose solution. Food and Bioproducts Processing, 92, 1–8.

    Article  CAS  Google Scholar 

  • Steffe, J. F. (1992). Rheological methods in food process engineering (2nd ed.). East Lansing: Freeman Press.

    Google Scholar 

  • Tabtiang, S., Prachayawarakon, S., & Soponronnarit, S. (2012). Effects of osmotic treatment and superheated steam puffing temperature on drying characteristics and texture properties of banana slices. Drying Technology, 30, 20–28.

    Article  CAS  Google Scholar 

  • Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26, 59–68.

    Article  Google Scholar 

  • Torreggiani, D., Forni, E., Erba, M. A., & Longoni, F. (1995). Functional properties of pepper osmodehydrated in hydrolyzed cheese whey permeate with or without sorbitol. Food Research International, 28, 161–166.

    Article  CAS  Google Scholar 

  • Torres, J. D., Talens, P., Escriche, I., & Chiralt, A. (2006). Influence of process conditions on mechanical properties of osmotically dehydrated mango. Journal of Food Engineering, 74, 240–246.

    Article  CAS  Google Scholar 

  • Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Pérez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42, 1022–1025.

    Article  CAS  Google Scholar 

  • Zenebon, O., & Pascuet, N. S. (2005). Métodos físico-químicos para análises de alimentos do Instituto Adolfo Lutz (4th ed.). Brasilia: IAL.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge São Paulo Research Foundation (FAPESP) under grants 2011/23599-0, 2011/22398-0, and 2012/13456-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen C. Tadini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaguri, L., Sanchez, M.S., Flammia, V.P. et al. Green Banana (Musa cavendishii) Osmotic Dehydration by Non-Caloric Solutions: Modeling, Physical-Chemical Properties, Color, and Texture. Food Bioprocess Technol 10, 615–629 (2017). https://doi.org/10.1007/s11947-016-1839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1839-2

Keywords

Navigation