Skip to main content
Log in

Microbial Enzymes as Substitutes of Chemical Additives in Baking Wheat Flour—Part I: Individual Effects of Nine Enzymes on Flour Dough Rheology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this work, we evaluated the effects of nine commercial enzymes—fungal (AMY-F), bacterial (AMY-B), and maltogenic (AMY-M) α-amylases, fungal (XYL-F) and bacterial (XYL-B) xylanases, glucose oxidase (GOX), laccase (LAC), lipase (LIP), and transglutaminase (TG) on the rheological properties of common wheat flour. Falling Number (FN), farinography, and alveography analysess were carried out varying the enzyme concentrations from 25 to 833 U kg−1, aiming to reach baking quality. α-Amylases affected mainly the farinographic properties, reducing the water absorption (WA) and stability time (ST). AMY-B was the most effective enzyme to adjust the FN, needing 150 U kg−1, while for AMY-F and AMY-M, it was necessary 583 U kg−1. In all tests, XYL-B was more efficient than XYL-F, but both improved the W value and P/L ratio. At 25 U kg−1, GOX increased the development time (DT), as well as the ST and the P/L ratio. LAC, which is not a commonly used enzyme, significantly improved the ST and W values, being an interesting oxidant agent. Moreover, the ideal enzyme concentrations determined were compared with those suggested by the suppliers, with under and over dosages observed, especially for α-amylases and xylanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AACC. (2000). Approved methods of analysis (10th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • AACC (2005) Mill Process Control. In: Wheat flour milling. References Series. p^pp 397–418. AACC International, Inc.

  • AACC. (2009). Approved methods of analysis (11th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Ahmad, Z., Butt, M. S., Ahmed, A., & Khalid, N. (2013). Xylanolytic modification in wheat flour and its effect on dough rheological characteristics and bread quality attributes. Journal of the Korean Society for Applied Biological Chemistry., 56(6), 723–729.

    Article  CAS  Google Scholar 

  • Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  • Barrera GN, León AE & Ribotta PD (2015) Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems. Journal of the Science of Food and Agriculture. In Press, 10.1002/jsfa.7374.

  • Bataillon, M., Cardinali, A. P. N., Castillon, N., & Duchiron, F. (2000). Purification and characterization of a moderately thermostable xylanase from Bacillus sp strain SPS-0. Enzyme and Microbial Technology, 26(2–4), 187–192.

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylase, α and β. In: Methods in enzymology, vol 1. p^pp 149–158. Academic Press.

  • Bonet, A., Rosell, C. M., Caballero, P. A., Gómez, M., Pérez-Munuera, I., & Lluch, M. A. (2006). Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level. Food Chemistry, 99(2), 408–415.

    Article  CAS  Google Scholar 

  • Caballero, P. A., Bonet, A., Rosell, C. M., & Gomez, M. (2005). Effect of microbial transglutarninase on the rheological and thermal properties of insect damaged wheat flour. Journal of Cereal Science, 42(1), 93–100.

    Article  CAS  Google Scholar 

  • Caballero, P. A., Gómez, M., & Rosell, C. M. (2007). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1), 42–53.

    Article  CAS  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2006). The Chorleywood bread process. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2007). Technology of breadmaking (2nd ed., Vol. 1). New York: Springer.

    Google Scholar 

  • Ciucu, A., & Patroescu, C. (1984). Fast spectrometric method of determining the activity of glucose oxidase. Analytical Letters, 17(12), 1417–1427.

    Article  CAS  Google Scholar 

  • Claus, H. (2004). Laccases: structure, reactions, distribution. Micron, 35(1–2), 93–96.

    Article  CAS  Google Scholar 

  • Collar, C., & Bollain, C. (2005). Impact of microbial transglutaminase on the staling behaviour of enzyme-supplemented pan breads. European Food Research and Technology, 221(3–4), 298–304.

    Article  CAS  Google Scholar 

  • Courtin, C. M., & Delcour, J. A. (2001). Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. Journal of Cereal Science, 33(3), 301–312.

    Article  CAS  Google Scholar 

  • Csáki, K. F. (2011). Synthetic surfactant food additives can cause intestinal barrier dysfunction. Medical Hypotheses, 76(5), 676–681.

    Article  Google Scholar 

  • Degrand, L., Rakotozafy, L., & Nicolas, J. (2015). Activity of carbohydrate oxidases as influenced by wheat flour dough components. Food Chemistry, 181, 333–338.

    Article  CAS  Google Scholar 

  • Dunnewind, B., Van Vliet, T., & Orsel, R. (2002). Effect of oxidative enzymes on bulk rheological properties of wheat flour doughs. Journal of Cereal Science, 36(3), 357–366.

    Article  CAS  Google Scholar 

  • Figueroa-Espinoza, M. C., Poulsen, C., Soe, J. B., Zargahi, M. R., & Rouau, X. (2004). Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes. Journal of Agricultural and Food Chemistry, 52(13), 4240–4249.

    Article  CAS  Google Scholar 

  • Garcia, T. A. (2006). Purificação e caracterização das lacases de Pycnoporus sanguineus. Brasília: Doutorado em Biologia Molecular, Departamento de Biologia Celular, Universidade de Brasília-Instituto de Ciências Biológicas.

    Google Scholar 

  • Gerits, L. R., Pareyt, B., Decamps, K., & Delcour, J. A. (2014a). Lipases and their functionality in the production of wheat-based food systems. CRF3 Comprehensive Reviews in Food Science and Food Safety, 13(5), 978–989.

    Article  CAS  Google Scholar 

  • Gerits, L. R., Pareyt, B., & Delcour, J. A. (2014b). A lipase based approach for studying the role of wheat lipids in bread making. Food Chemistry, 156, 190–196.

    Article  CAS  Google Scholar 

  • Goesaert H, Gebruers K, Courtin CM, Brijs K & Delcour JA (2007) Enzymes in Breadmaking. In: Bakery products: Science and Technology. p^pp 337–364.

  • Goesaert, H., Leman, P., Bijttebier, A., & Delcour, J. A. (2009a). Antifirming effects of starch degrading enzymes in bread crumb. Journal of Agricultural and Food Chemistry, 57(6), 2346–2355.

    Article  CAS  Google Scholar 

  • Goesaert, H., Slade, L., Levine, H., & Delcour, J. A. (2009b). Amylases and bread firming—an integrated view. Journal of Cereal Science, 50(3), 345–352.

    Article  CAS  Google Scholar 

  • Goesaert, H., Bijttebier, A., & Delcour, J. A. (2010). Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydrate Research, 345(3), 397–401.

    Article  CAS  Google Scholar 

  • Grossowicz, N., Wainfan, E., Borek, E., & Waelsch, H. (1950). The enzymatic formation of hydroxamic acids from glutamine and asparagine. Journal of Biological Chemistry, 187(1), 111–125.

    CAS  Google Scholar 

  • Hu X, Li Z, Yao J, Yu M, Yu X & Yao X (2012) Antistaling agent used for whitening and maintaining freshness of steamed bread, comprises lipase, amylase, xylanase and maltogenic amylase. CN103371426-A.

  • Joye, I. J., Lagrain, B., & Delcour, J. A. (2009). Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking—a review. Journal of Cereal Science, 50(1), 11–21.

    Article  CAS  Google Scholar 

  • Labat, E., Morel, M. H., & Rouau, X. (2001). Effect of laccase and manganese peroxidase on wheat gluten and pentosans during mixing. Food Hydrocolloids, 15(1), 47–52.

    Article  CAS  Google Scholar 

  • Leman, P., Goesaert, H., Vandeputte, G. E., Lagrain, B., & Delcour, J. A. (2005). Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydrate Polymers, 62(3), 205–213.

    Article  CAS  Google Scholar 

  • Leonowicz, A., & Grzywnowicz, K. (1981). Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology, 3(1), 55–58.

    Article  CAS  Google Scholar 

  • Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews, 14(6), 479–489.

    Article  CAS  Google Scholar 

  • Mattinen, M. L., Hellman, M., Permi, P., Autio, K., Kalkkinen, N., & Buchert, J. (2006). Effect of protein structure on laccase-catalyzed protein oligomerization. Journal of Agricultural and Food Chemistry, 54(23), 8883–8890.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analitical Chemistry., 31, 426–428.

    Article  CAS  Google Scholar 

  • Minussi, R. C., Pastore, G. M., & Durán, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13(6–7), 205–216.

    Article  CAS  Google Scholar 

  • Moers, K., Celus, I., Brijs, K., Courtin, C. M., & Delcour, J. A. (2005). Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydrate Research, 340(7), 1319–1327.

    Article  CAS  Google Scholar 

  • Noonan, G. O., Begley, T. H., & Diachenko, G. W. (2008). Semicarbazide formation in flour and bread. Journal of Agricultural and Food Chemistry, 56(6), 2064–2067.

    Article  CAS  Google Scholar 

  • Palma MB (2003) Xylanase production by Thermoascus aurantiacus using solid state cultivation (Produção de xilanases por Thermoascus aurantiacus em cultivo em estado sólido). Doctoral thesis, Chemical Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC

  • Pareyt, B., Finnie, S. M., Putseys, J. A., & Delcour, J. A. (2011). Lipids in bread making: sources, interactions, and impact on bread quality. Journal of Cereal Science, 54(3), 266–279.

    Article  CAS  Google Scholar 

  • Pizzinatto, A., Magno, C. P. R. S., & Campagnolli, D. M. F. (2004). Avaliação e controle de qualidade da farinha de trigo. Campinas: ITAL.

    Google Scholar 

  • Polizeli, M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.

    Article  CAS  Google Scholar 

  • Roberts, C. L., Rushworth, S. L., Richman, E., & Rhodes, J. M. (2013). Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. Journal of Crohn’s and Colitis, 7(4), 338–341.

    Article  Google Scholar 

  • Roccia, P., Ribotta, P. D., Ferrero, C., Perez, G. T., & Leon, A. E. (2012). Enzymes action on wheat-soy dough properties and bread quality. Food and Bioprocess Technology, 5(4), 1255–1264.

    Article  CAS  Google Scholar 

  • Santos, I. J. D., Santos, Y. L. D., Oliveira, M. G. D. A., & Silva, P. H. A. (2010). Expressão da alfa e beta amilase durante a germinação de cevada. Revista Brasileira de Produtos Agroindustriais, 12, 67–73.

    Article  Google Scholar 

  • Selinheimo, E., Kruus, K., Buchert, J., Hopia, A., & Autio, K. (2006). Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. Journal of Cereal Science, 43(2), 152–159.

    Article  CAS  Google Scholar 

  • Selinheimo, E., Autio, K., Krijus, K., & Buchert, J. (2007). Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of Agricultural and Food Chemistry, 55(15), 6357–6365.

    Article  CAS  Google Scholar 

  • Selinheimo, E., Lampila, P., Mattinen, M. L., & Buchert, J. (2008). Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. Journal of Agricultural and Food Chemistry, 56(9), 3118–3128.

    Article  CAS  Google Scholar 

  • Soares, C., De Castro, H., Moraes, F., & Zanin, G. (1999). Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Applied Biochemistry and Biotechnology, 79(1–3), 1–3.

    Google Scholar 

  • Souza, C. F. V., Rodrigues, R. C., Heck, J. X., & Ayub, M. A. Z. (2008). Optimization of transglutaminase extraction produced by Bacillus circulans BL32 on solid-state cultivation. Journal of Chemical Technology and Biotechnology, 83(9), 1306–1313.

    Article  Google Scholar 

  • Steffolani ME, D. P., Pérez, G. T., & León, A. E. (2010). Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. Journal of Cereal Science, 51(3), 366–373.

    Article  Google Scholar 

  • Van der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the alpha-amylase family. Journal of Biotechnology, 94(2), 137–155.

    Article  Google Scholar 

  • Ye, J., Wang, X. H., Sang, Y. X., & Liu, Q. (2011). Assessment of the determination of azodicarbonamide and its decomposition product semicarbazide: Investigation of variation in flour and flour products. Journal of Agricultural and Food Chemistry, 59(17), 9313–9318.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by scholarships (MM Bueno) from CAPES/FAPERGS. The authors especially wish to thank Tondo S.A. (Forqueta, Brazil) for kindly supplying the raw material and its laboratory for rheological analysis, as well as AB Enzymes, Granolab S.A., Novozymes and Vallens Food Ingredients for supplying the enzymes used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M.M., Thys, R.C.S. & Rodrigues, R.C. Microbial Enzymes as Substitutes of Chemical Additives in Baking Wheat Flour—Part I: Individual Effects of Nine Enzymes on Flour Dough Rheology. Food Bioprocess Technol 9, 2012–2023 (2016). https://doi.org/10.1007/s11947-016-1780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1780-4

Keywords

Navigation