Skip to main content
Log in

Microbial Enzymes as Substitutes of Chemical Additives in Baking Wheat Flour—Part II: Combined Effects of Nine Enzymes on Dough Rheology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 24 August 2016

Abstract

In this work, the combined effects of nine commercial enzymes were studied on the rheological properties of dough wheat flour. Fungal (AMY-F), bacterial (AMY-B), and maltogenic (AMY-M) α-amylases; fungal (XYL-F) and bacterial (XYL-B) xylanases; glucose oxidase (GOX); laccase (LAC); lipase (LIP); and transglutaminase (TG) were tested in two types of flour: standard strong flour (flour A) and common weak flour (flour B). Falling number (FN), farinography, and alveography analysis were carried out through two sequential experimental designs, aiming to identify synergistic and antagonist effects between the enzymes and the optimal concentration of each one as substitutes of chemical additives. For flour A, the best combination of enzymes was AMY-B (166 U kg−1), AMY-M (133 U kg−1), XYL-B (150 U kg−1), GOX (8 U kg−1), and LIP (150 U kg−1). It was identified as a synergistic effect between XYL-B and GOX to improvement of W value (10−4 J) and the P/L ratio. For flour B, the best combination of enzymes was AMY-B (150 U kg−1), LIP (150 U kg−1), GOX (100 U kg−1), and LAC (200 U kg−1). GOX and LAC presented a cooperative effect, when they were used at opposite concentrations. The enzyme mixtures were compared with chemical oxidant azodicarbonamide, and, even at the maximum concentration allowed by Brazilian Health Surveillance Agency, the enzyme mixture was more effective. It was demonstrated that it is possible to perform the complete substitution of chemical oxidants by enzymes in order to adequately improve the rheological parameters of dough wheat flours, even for a weak flour, making it suitable for bakery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AACC. (2000). Approved Methods of Analysis, vol 1–2 (10th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • AACC. (2009). Approved methods of analysis (11th ed.). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Barrera, G. N., León, A. E., & Ribotta, P. D. (2015). Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.7374.

    Google Scholar 

  • Berrin, J. G., & Juge, N. (2008). Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnology Letters, 30(7), 1139–1150.

    Article  CAS  Google Scholar 

  • Bonet, A., Rosell, C. M., Caballero, P. A., Gomez, M., Perez-Munuera, I., & Lluch, M. A. (2006). Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level. Food Chemistry, 99(2), 408–415.

    Article  CAS  Google Scholar 

  • Buche, F., Davidou, S., Pommet, M., Potus, J., Rouille, J., Verte, F., & Nicolas, J. (2011). Competition for oxygen among oxidative systems during bread dough mixing: consequences of addition of glucose oxidase and lipoxygenase on yeasted dough rheology. Cereal Chemistry, 88(5), 518–524.

    Article  CAS  Google Scholar 

  • Caballero, P. A., Gomez, M., & Rosell, C. M. (2007). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1), 42–53.

    Article  CAS  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2006). The Chorleywood bread process. Boca Raton: Woodhead Publishing.

    Book  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2007). Technology of Breadmaking, vol 1 (2nd ed.). New York: Springer.

    Google Scholar 

  • Courtin, C. M., & Delcour, J. A. (2001). Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. Journal of Cereal Science, 33(3), 301–312.

    Article  CAS  Google Scholar 

  • Damodaran, S. P. K. L. F. O. R. (2008). Fennema’s food chemistry. Boca Raton: CRC Press/Taylor & Francis.

    Google Scholar 

  • De Souza, C. F. V., Rodrigues, R. C., Heck, J. X., & Ayub, M. A. Z. (2008). Optimization of transglutaminase extraction produced by Bacillus circulans BL32 on solid-state cultivation. Journal of Chemical Technology & Biotechnology, 83(9), 1306–1313.

    Article  Google Scholar 

  • Dunnewind, B., Van Vliet, T., & Orsel, R. (2002). Effect of oxidative enzymes on bulk rheological properties of wheat flour doughs. Journal of Cereal Science, 36(3), 357–366.

    Article  CAS  Google Scholar 

  • Figueroa-Espinoza, M. C., Poulsen, C., Soe, J. B., Zargahi, M. R., & Rouau, X. (2004). Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes. Journal of Agricultural and Food Chemistry, 52(13), 4240–4249.

    Article  CAS  Google Scholar 

  • Flander, L., Rouau, X., Morel, M.-H., Autio, K., Seppanen-Laakso, T., Kruus, K., & Buchert, J. (2008). Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. Journal of Agricultural and Food Chemistry, 56(14), 5732–5742.

    Article  CAS  Google Scholar 

  • Gerits, L. R., Pareyt, B., Decamps, K., & Delcour, J. A. (2014). Lipases and their functionality in the production of wheat-based food systems. CRF3 Compr Rev Food Sci Food Saf, 13(5), 978–989.

    Article  CAS  Google Scholar 

  • Gerrard, J. A., Fayle, S. E., Wilson, A. J., Newberry, M. P., Ross, M., & Kavale, S. (1998). Dough properties and crumb strength of white pan bread as affected by microbial transglutaminase. Journal of Food Science, 63(3), 472–475.

    Article  CAS  Google Scholar 

  • Goesaert H, Gebruers K, Courtin CM, Brijs K & Delcour JA (2007) Enzymes in breadmaking. In: Bakery Products: Science and Technology.pp. 337–364.

  • Goesaert, H., Slade, L., Levine, H., & Delcour, J. A. (2009). Amylases and bread firming—an integrated view. Journal of Cereal Science, 50(3), 345–352.

    Article  CAS  Google Scholar 

  • Han, M., Zhang, Y., Fei, Y., Xu, X., & Zhou, G. (2008). Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 228(4), 665–670.

    Article  Google Scholar 

  • Joye, I. J., Lagrain, B., & Delcour, J. A. (2009). Endogenous redox agents and enzymes that affect protein network formation during breadmaking—a review. Journal of Cereal Science, 50(1), 1–10.

    Article  CAS  Google Scholar 

  • Labat, E., Morel, M. H., & Rouau, X. (2001). Effect of laccase and manganese peroxidase on wheat gluten and pentosans during mixing. Food Hydrocolloids, 15(1), 47–52.

    Article  CAS  Google Scholar 

  • Leman, P., Goesaert, H., Vandeputte, G. E., Lagrain, B., & Delcour, J. A. (2005). Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydrate Polymers, 62(3), 205–213.

    Article  CAS  Google Scholar 

  • Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews, 14(6), 479–489.

    Article  CAS  Google Scholar 

  • Min, B., & Green, B. W. (2008). Use of microbial transglutaminase and nonmeat proteins to improve functional properties of low NaCl, phosphate-free patties made from channel catfish (Ictalurus punctatus) belly flap meat. Journal of Food Science, 73(5), E218–E226.

    Article  CAS  Google Scholar 

  • Minussi, R. C., Pastore, G. M., & Durán, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13(6–7), 205–216.

    Article  CAS  Google Scholar 

  • Moers, K., Celus, I., Brijs, K., Courtin, C. M., & Delcour, J. A. (2005). Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydrate Research, 340(7), 1319–1327.

    Article  CAS  Google Scholar 

  • Muralikrishna, G., & Nirmala, M. (2005). Cereal α-amylases—an overview. Carbohydrate Polymers, 60(2), 163–173.

    Article  CAS  Google Scholar 

  • Noonan, G. O., Begley, T. H., & Diachenko, G. W. (2008). Semicarbazide formation in flour and bread. Journal of Agricultural and Food Chemistry, 56(6), 2064–2067.

    Article  CAS  Google Scholar 

  • Pizzinatto, A., Magno, C. P. R. S., & Campagnolli, D. M. F. (2004). Avaliação e controle de qualidade da farinha de trigo. Campinas: ITAL.

    Google Scholar 

  • Primo-Martín, C., & Martínez-Anaya, M. A. (2003). Influence of pentosanase and oxidases on water-extractable pentosans during a straight breadmaking process. Journal of Food Science, 68(1), 31–41.

    Article  Google Scholar 

  • Primo-Martin, C., Valera, R., & Martinez-Anaya, M. A. (2003). Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). Journal of Agricultural and Food Chemistry, 51(16), 4673–4679.

    Article  CAS  Google Scholar 

  • Primo-Martín, C., Wang, M., Lichtendonk, W. J., Plijter, J. J., & Hamer, R. J. (2005). An explanation for the combined effect of xylanase–glucose oxidase in dough systems. Journal of the Science of Food and Agriculture, 85(7), 1186–1196.

    Article  Google Scholar 

  • Renzetti, S., & Arendt, E. K. (2009). Effect of protease treatment on the baking quality of brown rice bread: from textural and rheological properties to biochemistry and microstructure. Journal of Cereal Science, 50(1), 22–28.

    Article  CAS  Google Scholar 

  • Renzetti, S., Courtin, C. M., Delcour, J. A., & Arendt, E. K. (2010). Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Food Chemistry, 119(4), 1465–1473.

    Article  CAS  Google Scholar 

  • Selinheimo, E., Kruus, K., Buchert, J., Hopia, A., & Autio, K. (2006). Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. Journal of Cereal Science, 43(2), 152–159.

    Article  CAS  Google Scholar 

  • Stadler, R. H., Mottier, P., Guy, P., Gremaud, E., Varga, N., Lalljie, S., Whitaker, R., Kintscher, J., Dudler, V., Read, W. A., & Castle, L. (2004). Semicarbazide is a minor thermal decomposition product of azodicarbonamide used in the gaskets of certain food jars. Analyst, 129(3), 276–281.

    Article  CAS  Google Scholar 

  • Steffolani, M. E., Ribotta, P. D., Pérez, G. T., & León, A. E. (2010). Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. Journal of Cereal Science, 51(3), 366–373.

    Article  CAS  Google Scholar 

  • Van der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. In: Journal of Biotechnology, vol 94. vol 2.pp. 137–155. Netherlands.

  • Ye, J., Wang, X. H., Sang, Y. X., & Liu, Q. (2011). Assessment of the determination of azodicarbonamide and its decomposition product semicarbazide: investigation of variation in flour and flour products. Journal of Agricultural and Food Chemistry, 59(17), 9313–9318.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by scholarships (MM Bueno) from CAPES/FAPERGS. The authors wish specially to thank Tondo S.A. (Forqueta, Brazil) for kindly supplying the raw material and its laboratory for rheological analysis, as well as AB Enzymes, Granolab S.A., Novozymes, and Vallens Food Ingredients for supplying the enzymes used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M.M., Thys, R.C.S. & Rodrigues, R.C. Microbial Enzymes as Substitutes of Chemical Additives in Baking Wheat Flour—Part II: Combined Effects of Nine Enzymes on Dough Rheology. Food Bioprocess Technol 9, 1598–1611 (2016). https://doi.org/10.1007/s11947-016-1744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1744-8

Keywords

Navigation