Skip to main content
Log in

Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Aroma, an essential characteristic of tomato fruit, plays an important role in determining the perception and acceptability of tomato products by consumers. During tomato fruit ripening, associated with color changes from green to red involving the conversion of chloroplasts to chromoplasts are changes of aromatic volatile profiles. Although the biosynthetic pathways for some aromatic volatiles have been established in tomato fruit recently, our knowledge of regulatory mechanisms is still rudimentary. On the other hand, many internal and external factors modify volatile metabolism in tomato fruit. This review first summarizes the current knowledge of expression patterns and biosynthetic pathways of aromatic volatiles in tomato fruit along with the role of ethylene in their biosynthesis. The impact of internal and pre- and postharvest external factors on volatile composition is then discussed. This review will provide critical information for research on tomato aromatic volatiles and their manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G. B., Tanksley, S. D., & Giovannoni, J. J. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell, 17(11), 2954–2965.

    Article  CAS  Google Scholar 

  • Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055.

    Article  CAS  Google Scholar 

  • Asghari, M., & Aghdam, M. S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science & Technology, 21(10), 502–509.

    Article  CAS  Google Scholar 

  • Bai, J., Baldwin, E. A., Imahori, Y., Kostenyuk, I., Burns, J., & Brecht, J. K. (2011). Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 60(2), 111–120.

    Article  CAS  Google Scholar 

  • Baldwin, E., Goodner, K., & Plotto, A. (2008). Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science, 73(6), S294–S307.

    Article  CAS  Google Scholar 

  • Baldwin, E., Nisperos-Carriedo, M., & Moshonas, M. (1991). Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. Journal of the American Society for Horticultural Science, 116(2), 265–269.

    CAS  Google Scholar 

  • Baldwin, E., Plotto, A., Narciso, J., & Bai, J. (2011). Effect of 1-methylcyclopropene on tomato flavour components, shelf life and decay as influenced by harvest maturity and storage temperature. Journal of the Science of Food and Agriculture, 91(6), 969–980.

    Article  CAS  Google Scholar 

  • Baldwin, E. A., Scott, J. W., & Bai, J. (2015). Sensory and chemical flavor analyses of tomato genotypes grown in Florida during three different growing seasons in multiple years. Journal of the American Society for Horticultural Science, 140(5), 490–503.

    Google Scholar 

  • Baldwin, E., Scott, J., & Shewfelt, R. (1995). Quality of ripened mutant and transgenic tomato cultigens. Proceedings of the Tomato Quality Workshop and Tomato Breeders Roundtable, 503, 47–57.

    Google Scholar 

  • Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hortscience, 35(6), 1013–1022.

    CAS  Google Scholar 

  • Barry, C. S., Llop-Tous, M. I., & Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology, 123(3), 979–986.

    Article  CAS  Google Scholar 

  • Boukobza, F., & Taylor, A. J. (2002). Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biology and Technology, 25(3), 321–331.

    Article  CAS  Google Scholar 

  • Burbidge, A., Grieve, T., Jackson, A., Thompson, A., & Taylor, I. (1997). Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum mill.) library. Journal of Experimental Botany, 48(12), 2111–2112.

    Article  CAS  Google Scholar 

  • Buttery, R. (1993). Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In T. Acree, & R. Teranishi (Eds.), Flavor science: sensible principles and techniques (pp. 259–286). Washington: American Chemical Society.

    Google Scholar 

  • Cebolla-Cornejo, J., Roselló, S., Valcárcel, M., Serrano, E., Beltrán, J., & Nuez, F. (2011). Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. Journal of Agricultural and Food Chemistry, 59(6), 2440–2450.

    Article  CAS  Google Scholar 

  • Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 136(1), 2641–2651.

    Article  CAS  Google Scholar 

  • Crouzet, J., Signoret, A., Coulibaly, J., & Roudsari, M. H. (1985). Influence of controlled atmosphere storage on tomato volatile components. In G. Charalambous (Ed.), The shelf life of foods and beverages (pp. 355–367). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Dalal, K., Olson, L., Yu, M., & Salunkhe, D. (1967). Gas chromatography of the field-, glass-greenhouse-grown, and artificially ripened tomatoes.: Lycopersicon esculentum mill. Phytochemistry, 6(1), 155–157.

    Article  CAS  Google Scholar 

  • Deltsidis, A., Pliakoni, E., Baldwin, E., Bai, J., Plotto, A., & Brecht, J. (2015). Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres. Acta Horticulturae, 2, 703–709.

    Article  Google Scholar 

  • Ding, C.-K., Wang, C., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate indu-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214(6), 895–901.

    Article  CAS  Google Scholar 

  • El Hadi, M., Zhang, F.-J., Wu, F.-F., Zhou, C.-H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200–8229.

    Article  Google Scholar 

  • Fagundes, C., Moraes, K., Pérez-Gago, M., Palou, L., Maraschin, M., & Monteiro, A. (2015). Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109, 73–81.

    Article  Google Scholar 

  • Froehlich, J. E., Itoh, A., & Howe, G. A. (2001). Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology, 125(1), 306–317.

    Article  CAS  Google Scholar 

  • Fung, R. W., Wang, C. Y., Smith, D. L., Gross, K. C., Tao, Y., & Tian, M. (2006). Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. Journal of Plant Physiology, 163(10), 1049–1060.

    Article  CAS  Google Scholar 

  • Gao, H., Zhu, B., Zhu, H., Zhang, Y., Xie, Y., Li, Y., & Luo, Y. (2007). Effect of suppression of ethylene biosynthesis on flavor products in tomato fruits. Russian Journal of Plant Physiology, 54(1), 80–88.

    Article  CAS  Google Scholar 

  • Griffiths, A., Barry, C., Alpuche-Solis, A. G., & Grierson, D. (1999). Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. Journal of Experimental Botany, 50(335), 793–798.

    Article  CAS  Google Scholar 

  • Howe, G. A., Lee, G. I., Itoh, A., Li, L., & DeRocher, A. E. (2000). Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiology, 123(2), 711–724.

    Article  CAS  Google Scholar 

  • Ilg, A., Bruno, M., Beyer, P., & Al-Babili, S. (2014). Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio, 4, 584–593.

    Article  CAS  Google Scholar 

  • Kader, A. (1984). Effects of postharvest handling procedures on tomato quality. Acta Horticulturae, 190, 209–221.

    Google Scholar 

  • Kader, A. A., Stevens, M. A., Albright-Holton, M., Morris, L. L., & Algazi, M. (1977). Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. Journal of the American Society for Horticultural Science, 102(6), 724–731.

    CAS  Google Scholar 

  • Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44–56.

    Article  CAS  Google Scholar 

  • Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59.

    Article  CAS  Google Scholar 

  • Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., Pozo, M. J., Maagd, R. A., Ruyter-Spira, C., & Bouwmeester, H. J. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535–547.

    Article  CAS  Google Scholar 

  • Lelièvre, J. M., Latche, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101(4), 727–739.

    Article  Google Scholar 

  • Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142–3148.

    Article  CAS  Google Scholar 

  • Lin, W., & Glass, A. (1997). The effects of NaCl addition and macronutrient concentration on fruit quality and flavor volatiles of greenhouse tomatoes. Acta Horticulturae, 481, 487–493.

    Google Scholar 

  • Longhurst, T., Lee, E., Hinde, R., Brady, C., & Speirs, J. (1994). Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. Plant Molecular Biology, 26(4), 1073–1084.

    Article  CAS  Google Scholar 

  • Longhurst, T., Tung, H., & Brady, C. (1990). Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruits. Journal of Food Biochemistry, 14(6), 421–433.

    Article  Google Scholar 

  • Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2012). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043–1051.

    Article  CAS  Google Scholar 

  • Maloney, G. S., Kochevenko, A., Tieman, D. M., Tohge, T., Krieger, U., Zamir, D., Taylor, M. G., Fernie, A. R., & Klee, H. J. (2010). Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant Physiology, 153(3), 925–936.

    Article  CAS  Google Scholar 

  • Mathieu, S., Dal Cin, V., Fei, Z., Li, H., Bliss, P., Taylor, M. G., Klee, H. J., & Tieman, D. M. (2009). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325–337.

    Article  CAS  Google Scholar 

  • Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K., & Saito, K. (2009). MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. The Plant Journal, 57(3), 555–577.

    Article  CAS  Google Scholar 

  • Maul, F., Sargent, S., Sims, C., Baldwin, E., Balaban, M., & Huber, D. (2000). Tomato flavor and aroma quality as affected by storage temperature. Journal of Food Science, 65(7), 1228–1237.

    Article  CAS  Google Scholar 

  • Maul, F., Sargent, S. A., Balaban, M. O., Baldwin, E. A., Huber, D. J., & Sims, C. A. (1998). Aroma volatile profiles from ripe tomatoes are influenced by physiological maturity at harvest: an application for electronic nose technology. Journal of the American Society for Horticultural Science, 123(6), 1094–1101.

    CAS  Google Scholar 

  • McCraw, D., Motes, J., & Schatzer, R. J. (1988). Commercial production of fresh market tomatoes. Oklahoma Cooperative Extension Service. http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-1112/HLA-6019web.pdf. Accessed 20 July 2015.

  • McDonald, R., McCollum, T., & Baldwin, E. (1996). Prestorage heat treatments influence free sterols and flavor volatiles of tomatoes stored at chilling temperature. Journal of the American Society for Horticultural Science, 121(3), 531–536.

    CAS  Google Scholar 

  • McDonald, R., McCollum, T., & Baldwin, E. (1999). Temperature of water heat treatments influences tomato fruit quality following low-temperature storage. Postharvest Biology and Technology, 16(2), 147–155.

    Article  Google Scholar 

  • McGlasson, W., Last, J., Shaw, K., & Meldrum, S. (1987). Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. Hortscience, 22(4), 632–634.

    CAS  Google Scholar 

  • Mikkelsen, R. (2005). Tomato flavor and plant nutrition: a brief review. Better Crops with Plant Food, 89(2), 14–15.

    Google Scholar 

  • Ozores-Hampton, M. P., Simonne, E., McAvoy, G., Roka, F., Stansly, P., Shukla, S., Roberts, P., Morgan, K., Cushman, K., & Obreza, T. A. (2006). Nitrogen best management practice with tomato production in Florida in the 2005–2006 season. Proceedings of the Florida State Horticultural Society, 119, 284–288.

    Google Scholar 

  • Pesaresi, P., Mizzotti, C., Colombo, M., & Masiero, S. (2014). Genetic regulation and structural changes during tomato fruit development and ripening. Frontiers in Plant Science, 5, 124.

    Article  Google Scholar 

  • Picton, S., Barton, S. L., Bouzayen, M., Hamilton, A. J., & Grierson, D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant Journal, 3(3), 469–481.

    Article  CAS  Google Scholar 

  • Pirrello, J., Regad, F., Latche, A., Pech, J.-C., & Bouzayen, M. (2009). Regulation of tomato fruit ripening. CAB Reviews., 4(51), 1–14.

    Article  Google Scholar 

  • Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613–4623.

    Article  Google Scholar 

  • Ratanachinakorn, B., Klieber, A., & Simons, D. (1997). Effect of short-term controlled atmospheres and maturity on ripening and eating quality of tomatoes. Postharvest Biology and Technology, 11(3), 149–154.

    Article  CAS  Google Scholar 

  • Renard, C. M., Ginies, C., Gouble, B., Bureau, S., & Causse, M. (2013). Home conservation strategies for tomato (Solanum lycopersicum): storage temperature vs. duration-is there a compromise for better aroma preservation? Food Chemistry, 139(1), 825–836.

    Article  CAS  Google Scholar 

  • Riley, J., Willemot, C., & Thompson, J. E. (1996). Lipoxygenase and hydroperoxide lyase activities in ripening tomato fruit. Postharvest Biology and Technology, 7(1), 97–107.

    Article  CAS  Google Scholar 

  • Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4), 555–573.

    Article  CAS  Google Scholar 

  • Seymour, G. B., Taylor, J. E., & Tucker, G. A. (1993). Biochemistry of fruit ripening. London: Chapman and Hall.

    Book  Google Scholar 

  • Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., Bies, D., Chen, K., & Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 65(2), 419–428.

    Article  CAS  Google Scholar 

  • Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882–892.

    Article  CAS  Google Scholar 

  • Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N. S., Loveys, B., & Schuch, W. (1998). Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiology, 117(3), 1047–1058.

    Article  CAS  Google Scholar 

  • Tandon, K. S., Jordan, M., Goodner, K. L., & Baldwin, E. A. (2001). Characterization of fresh tomato aroma volatiles using GC-olfactometry. Proceedings of the Florida State Horticultural Society, 114, 142–144.

    Google Scholar 

  • Thybo, A. K., Edelenbos, M., Christensen, L. P., Sørensen, J. N., & Thorup-Kristensen, K. (2006). Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT-Food Science and Technology, 39(8), 835–843.

    Article  CAS  Google Scholar 

  • Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006a). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287–8292.

    Article  CAS  Google Scholar 

  • Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113–123.

    Article  CAS  Google Scholar 

  • Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660–2669.

    Article  CAS  Google Scholar 

  • Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006b). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887–896.

    Article  CAS  Google Scholar 

  • Tikunov, Y., Lommen, A., de Vos, C. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    Article  CAS  Google Scholar 

  • Tikunov, Y. M., Molthoff, J., de Vos, R. C., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J., Nijenhuis-de Vries, M., Labrie, C. W., Verkerke, W., & van de Geest, H. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 prevents the release of smoky aroma from tomato fruit. The Plant Cell, 25(8), 3067–3078.

    Article  CAS  Google Scholar 

  • van Gemert, L. (2003). Odour thresholds-compilations of odour thresholds in air, water and other media. Utrecht: Oliemans Punter & Partners BV.

    Google Scholar 

  • Viljanen, K., Lille, M., Heiniö, R.-L., & Buchert, J. (2011). Effect of high-pressure processing on volatile composition and odour of cherry tomato purée. Food Chemistry, 129(4), 1759–1765.

    Article  CAS  Google Scholar 

  • Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., Simkin, A. J., Goulet, C., Strack, D., & Bouwmeester, H. J. (2010). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 61(2), 300–311.

    Article  CAS  Google Scholar 

  • Wang, L., Baldwin, E. A., Plotto, A., Luo, W., Raithore, S., Yu, Z., & Bai, J. (2015a). Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature. Postharvest Biology and Technology., 108, 28–38.

    Article  CAS  Google Scholar 

  • Wang, L., Baldwin, E. A., Zhao, W., Plotto, A., Sun, X., Wang, Z., Brecht, J. K., Bai, J., & Yu, Z. (2015b). Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT-Food Science and Technology, 62(1), 115–121.

    Article  CAS  Google Scholar 

  • Wang, L., Baldwin, E. A., Yu, Z., & Bai, J. (2015c). The impact of kitchen and food service preparation practices on the volatile aroma profile in ripe tomatoes: effects of refrigeration and blanching. Hortscience, 50(9), 1358–1364.

    Google Scholar 

  • Wills, R., & Ku, V. (2002). Use of 1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes. Postharvest Biology and Technology, 26(1), 85–90.

    Article  CAS  Google Scholar 

  • Wright, D. H., & Harris, N. D. (1985). Effect of nitrogen and potassium fertilization on tomato flavor. Journal of Agricultural and Food Chemistry, 33(3), 355–358.

    Article  CAS  Google Scholar 

  • Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35(1), 155–189.

    Article  CAS  Google Scholar 

  • Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., Fernie, A. R., & Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139–2154.

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, L., Li, F., Meng, D., & Sheng, J. (2011). Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. Journal of Agricultural and Food Chemistry, 59(17), 9351–9357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the China Scholarship Council (201306850049) and Postgraduate Program in Jiangsu Province (CXLX13ˍ267) for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhe Bai.

Additional information

Mention of a trademark or proprietary product is for identification only and does not imply a guarantee or warranty of the product by the U.S. Department of Agriculture. The U.S. Department of Agriculture prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Baldwin, E.A. & Bai, J. Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations. Food Bioprocess Technol 9, 203–216 (2016). https://doi.org/10.1007/s11947-015-1638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1638-1

Keywords

Navigation