Skip to main content
Log in

Extraction of Oat (Avena sativa L.) Antifreeze Proteins and Evaluation of Their Effects on Frozen Dough and Steamed Bread

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, vacuum infiltration-centrifugation of cold-induced oats at −18 °C was adopted in the extraction of oat antifreeze proteins (AFPs), and the effects of the oat AFPs on the physicochemical, rheological, and fermentation properties of frozen dough and the textural characteristics of steamed bread were investigated. Supplementation with oat AFPs lowered the freezable water content of the dough, resulting in some beneficial effects on final steamed bread. The rheological properties of the oat AFP group showed a greater fermentation capacity than did the control group (without oat AFP). A scanning electron microscopic analysis showed that supplementation with oat AFPs could protect the gluten matrix from disruption, thus resulting in superior textural properties in the steamed bread. In conclusion, oat AFPs could be used as a beneficial additive to frozen dough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFPs:

Antifreeze proteins

THA:

Thermal hysteresis activity

SEM:

Scanning electron microscopy

DSC:

Differential scanning calorimeter

PBS:

Phosphate-buffered saline solution

TPA:

Texture profile analysis

G′:

The storage modulus

G″:

The loss modulus

Hm :

The maximum height of the gas emission curve

Hm:

The maximum dough height

V total :

The total volume

References

  • Amornwittawat, N., Wang, S., Duman, J. G., & Wen, X. (2008). Polycarboxylates enhance beetle antifreeze protein activity. Biochimica Et Biophysica Acta-Proteins and Proteomics., 1784(12), 1942–1948.

    Article  CAS  Google Scholar 

  • Autio, K., & Sinda, E. (1992). Frozen doughs—rheological changes and yeast viability. Cereal Chemistry., 69(4), 409–413.

    Google Scholar 

  • Baier-Schenk, A., Handschin, S., von Schonau, M., Bittermann, A. G., Bachi, T., & Conde-Petit, B. (2005). In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): formation of ice and changes in the gluten network. Journal of Cereal Science., 42(2), 255–260.

    Article  CAS  Google Scholar 

  • Bhattacharya, M., Langstaff, T. M., & Berzonsky, W. A. (2003). Effect of frozen storage and freeze-thaw cycles on the rheological and baking properties of frozen doughs. Food Research International., 36(4), 365–372.

    Article  Google Scholar 

  • Block, W., Wharton, D. A., & Sinclair, B. J. (1998). Cold tolerance of a New Zealand alpine cockroach, Celatoblatta quinquemaculata (Dictyoptera, Blattidae). Physiological Entomology., 23(1), 1–6.

    Article  Google Scholar 

  • Campelo, A. F., & Belo, I. (2004). Fermentative capacity of baker’s yeast exposed to hyperbaric stress. Biotechnology Letters., 26(15), 1237–1240.

    Article  CAS  Google Scholar 

  • Collar, C., Andreu, P., & Martinez-Anaya, M. A. (1998). Interactive effects of flour, starter and enzyme on bread dough machinability. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology., 207(2), 133–139.

    Article  CAS  Google Scholar 

  • Curti, E., Carini, E., Bonacini, G., Tribuzio, G., & Vittadini, E. (2013). Effect of the addition of bran fractions on bread properties. Journal of Cereal Science., 57(3), 325–332.

    Article  CAS  Google Scholar 

  • Ding, X. L., Zhang, H., Liu, W. H., Wang, L., Qian, H. F., & Qi, X. G. (2014). Extraction of carrot (Daucus carota) antifreeze proteins and evaluation of their effects on frozen white salted noodles. Food and Bioprocess Technology., 7(3), 842–852.

    Article  CAS  Google Scholar 

  • Duman, J. G., & Olsen, T. M. (1993). Thermal hysteresis protein-activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology, 30(3), 322–328.

    Article  Google Scholar 

  • ErdogduArnoczky, N., Czuchajowska, Z., & Pomeranz, Y. (1996). Functionality of whey and casein in fermentation and in breadbaking by fixed and optimized procedures. Cereal Chemistry., 73(3), 309–316.

    CAS  Google Scholar 

  • Feeney RE, Yeh Y (1993) Antifreeze proteins—properties, mechanism of action, and possible applications. Food Technology. 47(1), 82-&.

  • Feeney, R. E., & Yeh, Y. (1998). Antifreeze proteins: current status and possible food uses. Trends in Food Science & Technology., 9(3), 102–106.

    Article  CAS  Google Scholar 

  • Fenney, F. E., Osuga, D. T., & Yeh, Y. (1996). Antifreeze proteins: from purely scientific interest to possible uses in agriculture, fish culture, foods, and medicine. Agriculture Food Chemistry., 3, 155–174.

    Google Scholar 

  • Goff, H. D. (1992). Low-temperature stability and the glassy state in frozen foods. Food Research International., 25(4), 317–325.

    Article  Google Scholar 

  • Graham, L. A., Liou, Y. C., Walker, V. K., & Davies, P. L. (1997). Hyperactive antifreeze protein from beetles. Nature, 388(6644), 727–728.

    Article  CAS  Google Scholar 

  • Griffith, M., & Ewart, K. V. (1995). Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances., 13(3), 375–402.

    Article  CAS  Google Scholar 

  • Hino, A., Takano, H., & Tanaka, Y. (1987). New freeze-tolerant yeast for frozen dough preparations. Cereal Chemistry., 64(4), 269–275.

    Google Scholar 

  • Inoue, Y., Sapirstein, H. D., Takayanagi, S., & Bushuk, W. (1994). Studies on frozen doughs. III: some factors involved in dough weakening during frozen storage and thaw-freeze cycles. Cereal Chemistry, 71(2), 118–121.

  • Jiang, Z. Q., Cong, Q. Q., Yan, Q. J., Kumar, N., & Du, X. D. (2010). Characterisation of a thermostable xylanase from Chaetomium sp and its application in Chinese steamed bread. Food Chemistry., 120(2), 457–462.

    Article  CAS  Google Scholar 

  • Jorov, A., Zhorov, B. S., & Yang, D. S. C. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science., 13(6), 1524–1537.

    Article  CAS  Google Scholar 

  • Knight, C. A., Cheng, C. C., & Devries, A. L. (1991). Adsorption of alpha-helical antifreeze peptides on specific ice crystal-surface planes. Biophysical Journal., 59(2), 409–418.

    Article  CAS  Google Scholar 

  • Kontogiorgos, V., Goff, H. D., & Kasapis, S. (2007). Effect of aging and ice structuring proteins on the morphology of frozen hydrated gluten networks. Biomacromolecules, 8(4), 1293–1299.

    Article  CAS  Google Scholar 

  • Kontogiorgos, V., Goff, H. D., & Kasapis, S. (2008). Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures. Food Hydrocolloids, 22(6), 1135–1147.

    Article  CAS  Google Scholar 

  • Kuiper, M. J., Lankin, C., Gauthier, S. Y., Walker, V. K., & Davies, P. L. (2003). Purification of antifreeze proteins by adsorption to ice. Biochemical and Biophysical Research Communications., 300(3), 645–648.

    Article  CAS  Google Scholar 

  • Laaksonen, T. J., & Roos, Y. H. (2000). Thermal, dynamic-mechanical, and dielectric analysis of phase and state transitions of frozen wheat doughs. Journal of Cereal Science., 32(3), 281–292.

    Article  CAS  Google Scholar 

  • Lu, W., & Grant, L. A. (1999). Role of flour fractions in breadmaking quality of frozen dough. Cereal Chemistry., 76(5), 663–667.

    Article  CAS  Google Scholar 

  • Meyer, K., Keil, M., & Naldrett, M. J. (1999). A leucine-rich repeat protein of carrot that exhibits antifreeze activity. Febs Letters., 447(2–3), 171–178.

    Article  CAS  Google Scholar 

  • Panadero, J., Randez-Gil, F., & Prieto, J. A. (2005). Heterologous expression of type I antifreeze peptide GS−5 in baker’s yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Journal of Agricultural and Food Chemistry., 53(26), 9966–9970.

    Article  CAS  Google Scholar 

  • Rasanen, J., Blanshard, J. M. V., Mitchell, J. R., Derbyshire, W., & Autio, K. (1998). Properties of frozen wheat doughs at subzero temperatures. Journal of Cereal Science., 28(1), 1–14.

    Article  Google Scholar 

  • Ribotta, P. D., Leon, A. E., & Anon, M. C. (2001). Effect of freezing and frozen storage of doughs on bread quality. Journal of Agricultural and Food Chemistry., 49(2), 913–918.

    Article  CAS  Google Scholar 

  • Ribotta, P. D., Leon, A. E., & Anon, M. C. (2003). Effect of freezing and frozen storage on the gelatinization and retrogradation of amylopectin in dough baked in a differential scanning calorimeter. Food Research International., 36(4), 357–363.

    Article  CAS  Google Scholar 

  • Sim, S. Y., Aziah, A. A. N., & Cheng, L. H. (2011). Characteristics of wheat dough and Chinese steamed bread added with sodium alginates or konjac glucomannan. Food Hydrocolloids, 25(5), 951–957.

    Article  CAS  Google Scholar 

  • Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C. J., Holt, C., Telford, J., Lillford, P., & Bowles, D. J. (1999). Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochemical Journal., 340, 385–391.

    Article  CAS  Google Scholar 

  • Su, D. M., Ding, C. H., Li, L., Su, D. H., & Zheng, X. Y. (2005). Effect of endoxylanases on dough properties and making performance of Chinese steamed bread. European Food Research and Technology., 220(5–6), 540–545.

    Article  CAS  Google Scholar 

  • Urrutia, M. E., Duman, J. G., & Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica Et Biophysica Acta., 1121(1–2), 199–206.

    Article  CAS  Google Scholar 

  • Yang, D. S. C., Hon, W. C., Bubanko, S., Xue, Y. Q., Seetharaman, J., Hew, C. L., & Sicheri, F. (1998). Identification of the ice-binding surface on a type III antifreeze protein with a “flatness function” algorithm. Biophysical Journal., 74(5), 2142–2151.

    Article  CAS  Google Scholar 

  • Yeh, C. M., Kao, B. Y., & Peng, H. J. (2009). Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. Journal of Agricultural and Food Chemistry, 57(14).

  • Zachariassen, K. E., & Husby, J. A. (1982). Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature, 298(5877), 865–867.

    Article  Google Scholar 

  • Zhang, C., Zhang, H., & Wang, L. (2007a). Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International., 40(6), 763–769.

    Article  CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., Gao, H., Guo, X. N., & Yao, H. Y. (2007b). Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation. Journal of Agricultural and Food Chemistry., 55(23), 9620–9626.

    Article  CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., & Yao, H. Y. (2007c). Validation of antifreeze properties of glutathione based on its thermodynamic characteristics and protection of baker’s yeast during cryopreservation. Journal of Agricultural and Food Chemistry., 55(12), 4698–4703.

    Article  CAS  Google Scholar 

  • Zounis, S., Quail, K. J., Wootton, M., & Dickson, M. R. (2002). Studying frozen dough structure using low-temperature scanning electron microscopy. Journal of Cereal Science., 35(2), 135–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31171637) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, H., Wang, L. et al. Extraction of Oat (Avena sativa L.) Antifreeze Proteins and Evaluation of Their Effects on Frozen Dough and Steamed Bread. Food Bioprocess Technol 8, 2066–2075 (2015). https://doi.org/10.1007/s11947-015-1560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1560-6

Keywords

Navigation