Skip to main content
Log in

Impact of Ethanol Treatment on the Chemical Properties of Cell Walls and Their Influence on Toughness of White Asparagus (Asparagus officinalis L.) Spears

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Toughening is the most important postharvest factor that negatively affects quality of fresh white asparagus (Asparagus officinalis L.) spears. It is assumed to result from wounding-induced or developmentally regulated cell wall thickening and increased lignification of sclerenchyma sheath cells and of vascular bundle elements. Postharvest application of ethanol has been shown to be an effective disinfectant of white asparagus spears; it is also known to delay or inhibit plant development. The latter was tested for its potential efficacy to reduce undesired spear toughening. In this context, effects of ethanol treatment on changes in cell wall properties were investigated. Practically relevant short-term washing of spears in 50 % ethanol solution (v/v) at 10 °C for 30 and 90 s reduced toughening of fresh white asparagus spears during 4 days of storage at approx. 20 °C. The treatment inhibited the biosynthesis of secondary cell wall structural carbohydrates (hemicellulose and cellulose) and of lignins, although to a lesser extent. Cell wall contents of pectic substances were also less affected, while the content of cell wall proteins was pronouncedly reduced by ethanol exposure. As a conclusion, practically relevant short-term washing with ethanol solution seems to be a promising approach to improve quality maintenance and safety of fresh white asparagus spears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson-Gunneras, S., Mellerowicz, E. J., Love, J., Segerman, B., Ohmiya, Y., Coutinho, P. M., Nilsson, P., Henrissat, B., Moritz, T., & Sundberg, B. (2005). Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant Journal, 45, 144–165.

    Article  Google Scholar 

  • AOAC. (1999). Official methods of analysis (14th ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Atkins, A. G., & Vincent, J. F. V. (1984). An instrumented microtome for improved histological section and the measurement of fracture toughness. Journal of Materials Science Letters, 3, 310–312.

    Article  Google Scholar 

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & Gonález-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221, 731–738.

    Article  CAS  Google Scholar 

  • Bai, J., Plotto, A., Spotts, R., & Rattanapanone, N. (2011). Ethanol vapor and saprophytic yeast treatments reduce decay and maintain quality of intact and fresh-cut sweet cherries. Postharvest Biology and Technology, 62, 204–212.

    Article  CAS  Google Scholar 

  • Beaulieu, J. C., & Saltveit, M. (1997). Inhibition of tomato fruit ripening by acetaldehyde and ethanol is concentration dependent and varies with initial fruit maturity. Journal of the American Society for Horticultural Science, 122, 392–398.

    CAS  Google Scholar 

  • Ben-Arie, R., & Lavee, S. (1971). Pectic changes occurring in “Elberta” peaches suffering from woolly break down. Phytochemistry, 10, 531–538.

    Article  CAS  Google Scholar 

  • Bhowmik, P., & Matsui, T. (2004). Changes in the activity and expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, and phenylalanine ammonia-lyase in asparagus spears in response to wound-induced ethylene synthesis. HortScience, 39, 1074–1078.

    CAS  Google Scholar 

  • Billau, W. (1986). Untersuchungen über Lokalisation und Ausmaß der Lignifizierung in Pflanzen von Asparagus officinals L. Dissertation. Universität Hohenheim, Germany.

  • Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Chang, D. C. N. (1983). Fine structural changes of asparagus spear during storage. Acta Horticulturae, 138, 305–312.

    Google Scholar 

  • Corcuff, R., Ad, J., Hamza, E., Castaigne, E., & Makhlouf, J. (1996). Storage of broccoli florets in ethanol vapor enriched atmospheres. Postharvest Biology and Technology, 7, 219–229.

    Article  Google Scholar 

  • Dao, T., & Dantigny, P. (2011). Control of food spoilage fungi by ethanol. Food Control, 22, 360–368.

    Article  CAS  Google Scholar 

  • Davies, D. D. (1980). Anaerobic metabolism and the production of organic acids. In D. D. Davies (Ed.), The biochemistry of plants (Vol. 2, pp. 581–611). New York: Academic Press.

    Google Scholar 

  • Ecker, J. (1995). The ethylene signal transduction pathway in plants. Science, 268, 667–675.

  • Everson, H. P., Waldron, K. W., Geeson, J. D., & Browne, K. M. (1992). Effects of modified atmospheres on textural and cell wall changes of asparagus during shelf-life. International Journal of Food Science and Technology, 27, 187–199.

    Article  CAS  Google Scholar 

  • Gabler, F. M., Mansour, M. F., Smilanick, J. L., & Mackey, B. E. (2004). Survival of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata after exposure to ethanol solution at various temperatures. Journal of Applied Microbiology, 96, 1354–1360.

    Article  Google Scholar 

  • Goering, H. K., & van Soest, P. J. (1972). Forage fibre analyses. Agriculture Handbook 379 (20 pp). Washington: USDA.

    Google Scholar 

  • Gómez Galindo, F., Bråthen, E., Knutsen, S. H., Sommarin, M., Gekas, V., & Sjöholm, I. (2004). Changes in the carrot (Daucus carota L. cv. Nerac) cell wall during storage. Food Research International, 37, 225–232.

    Article  Google Scholar 

  • Gutiérrez-Martínez, P., Osuna-López, S. G., Calderón-Santoyo, M., Cruz-Hernández, A., & Bautista-Baños, S. (2012). Influence of ethanol and heat on disease control and quality in stored mango fruits. LWT - Food Science and Technology, 45, 20–27.

    Article  Google Scholar 

  • Haard, N. F., Sharma, S. C., Wolfe, R., & Frenkel, C. (1974). Ethylene induced isoperoxidase changes during fiber formation in postharvest asparagus. Journal of Food Science, 39, 452–456.

    Article  CAS  Google Scholar 

  • Hassenberg, K., Huyskens-Keil, S., & Herppich, W. B. (2012). Impact of postharvest UV-C and ozone treatments on microbiological properties of white asparagus (Asparagus officinalis L.). Journal of Applied Botany and Food Quality, 85, 174–181.

    Google Scholar 

  • Heins, R. D. (1980). Inhibition of ethylene synthesis and senescence in carnation by ethanol. Journal of the American Society for Horticultural Science, 105(1), 141–144.

    CAS  Google Scholar 

  • Hennion, S., & Hartmann, C. (1990). Respiration and ethylene in harvested asparagus spears during aging at 20 °C. Scientia Horticulturae, 43, 189–195.

    Article  CAS  Google Scholar 

  • Herppich, W. B., & Huyskens-Keil, S. (2008). Cell wall biochemistry and biomechanics of harvested white asparagus shoots as affected by temperature. Annals of Applied Biology, 152, 377–388.

    Article  CAS  Google Scholar 

  • Herppich, W. B., Herold, B., Geyer, M., & Gomez, F. (2004). Effects of temperature and water relations on carrots and radish tuber texture. Journal of Applied Botany, 78, 11–17.

    Google Scholar 

  • Herppich, W. B., Huyskens-Keil, S., & Kadau, R. (2005). Effects of short-term low-temperature storage on mechanical and chemical properties of white asparagus cell walls. Journal of Applied Botany and Food Quality, 79, 63–71.

    CAS  Google Scholar 

  • Herppich, W. B., Huyskens-Keil, S., & Hassenberg, K. (2014). Impact of ethanol treatment on physiological and microbiological properties of fresh white asparagus (Asparagus officinalis L.) spears. LWT - Food Science and Technology, 57, 156–164. doi:10.1016/j.lwt.2014.01.022.

    Article  CAS  Google Scholar 

  • Hsiao, P.-H., Su, J.-C., & Sung, H.-Y. (1981). Changes of some enzyme activities and level of metabolites of asparagus spears after harvest. Journal of the Chinese Agricultural Chemical Society, 19, 1–11.

    CAS  Google Scholar 

  • Hu, W., Jiang, A., Tian, M., Liu, C., & Wang, Y. (2010). Effect of ethanol treatment on physiological and quality attributes of fresh-cut eggplant. Journal of the Science of Food and Agriculture, 90, 1323–1326.

    Article  CAS  Google Scholar 

  • Huyskens, S. (1991). Morphological, physiological and biochemical aspects in the cultivation of two curcubits: Luffa acutangula L. Roxb. and Momordica charantia L. Dissertation, Universität Bonn, Germany.

  • Huyskens-Keil, S., & Herppich, W. B. (2013). High CO2 effects on biochemical and textural properties of white asparagus (Asparagus officinalis L.) spears in postharvest. Postharvest Biology and Technology, 75, 45–53.

    Article  CAS  Google Scholar 

  • Huyskens-Keil, S., Hassenberg, K., & Herppich, W. B. (2011). Impact of postharvest UV-C and ozone treatment on textural properties of white asparagus (Asparagus officinalis L.). Journal of Applied Botany and Food Quality, 84, 229–234.

    CAS  Google Scholar 

  • Jamieson, L. E., Meier, X., Page, B., Zulhendri, F., Page-Weir, N., Brash, D., McDonald, R. M., Stanley, J., & Woolf, A. B. (2009). A review of postharvest disinfestation technologies for selected fruits and vegetables. Report of the New Zealand Institute for Plant and Food Research Ltd., pp. 36. Available at: http://maxa.maf.govt.nz/sff/about-projects/search/L09-133/review-postharvest-disinfestation-fruit-veges.pdf.

  • Jaramillo, S., Rodriguez, R., Jiménez, A., Guillén, R., Fernández-Bolanos, J., & Heredia, A. (2007). Effects of storage conditions on the accumulation of ferulic acid derivates in white asparagus cell walls. Journal of the Science of Food and Agriculture, 87, 286–296.

    Article  CAS  Google Scholar 

  • Jin, Y. Z., Lin, D. Q., Liu, W. W., Qi, H. Y., & Bai, X. H. (2013). Ethanol vapour treatment maintains postharvest storage quality and inhibits ethylene biosynthesis during storage of oriental sweet melons. Postharvest Biology and Technology, 86, 372–380.

    Article  CAS  Google Scholar 

  • Karabulut, O. A., Arslan, U., Kuruoglu, G., & Ozgenc, T. (2004). Control of postharvest diseases of sweet cherry with ethanol and hot water. Journal of Phytopathology, 5, 298–303.

    Article  Google Scholar 

  • Kelly, M. O., & Saltveit, M. E., Jr. (1988). Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening. Plant Physiology, 88, 143–147.

    Article  CAS  Google Scholar 

  • Larson, E. L., & Morton, H. E. (1991). Alcohols. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (pp. 191–203). London: Lea and Febiger.

    Google Scholar 

  • Lescano, G., Narvaiz, P., & Kairiyama, E., (1993). Gamma irradiation of asparagus (Asparagus officinalis, var. Argenteuil). LWT - Food Science and Technology, 26, 411–416.

  • Lichter, A., Zutkhy, Y., Sonega, L., Dvir, O., Kaplunov, T., Sarig, P., & Ben-Arie, R. (2002). Ethanol controls postharvest decay of table grapes. Postharvest Biology and Technology, 24, 301–308.

    Article  CAS  Google Scholar 

  • Lipton, W. J. (1990). Postharvest biology of fresh asparagus. Horticultural Reviews, 12, 69–115.

    CAS  Google Scholar 

  • Liu, Z.-Y., & Jiang, W.-B. (2006). Lignin deposition and effect of postharvest treatment on lignification of green asparagus (Asparagus officinalis L.). Plant Growth Regulation, 48, 187–193.

    Article  CAS  Google Scholar 

  • Liu, M., Qian, B., Zhang, H., Deng, Y., Shen, Y., Ping, J., & Cao, L. (2010). Sanitizer treatments alleviate lignification of sliced few-flower wildrice (Zizania latifolia Turcz.). Food Research International, 43, 2363–2368.

    Article  Google Scholar 

  • Lucas, P. W., Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Choong, M. F. (1995). The toughness of plant cell walls. Philosophical Transactions of the Royal Society, B: Biological Sciences, 348, 363–372.

    Article  Google Scholar 

  • Margosan, D. A., Smilanick, J. L., Simmons, G. F., & Henson, D. J. (1997). Combination of hot water and ethanol to control postharvest decay of peaches and nectarines. Plant Disease, 81, 1405–1409.

    Article  Google Scholar 

  • Marshall, J. G., Dumbroff, E. B., Thatcher, B. J., Martin, B., Rutledge, R. G., & Blumwald, E. (1999). Synthesis and oxidative insolubility of cell-wall proteins during osmotic stress. Planta, 208, 401–408.

    Article  CAS  Google Scholar 

  • McComb, E., & McCready, R. (1952). Colorimetric determination of pectic substances. Analytical Biochemistry, 24, 1630–1632.

    CAS  Google Scholar 

  • Mellerowicz, E. J., Baucher, M., Sundberg, B., & Boerjan, W. (2001). Unravelling cell-wall formation in the woody dicot stem. Plant Molecular Biology, 47, 239–274.

    Article  CAS  Google Scholar 

  • Mibus, H., Hoff, K., & Serek, M. (2014). Ethanol treatment induces compact growth in Kalanchoë. Scientia Horticulturae, 168, 234–239.

    Article  CAS  Google Scholar 

  • Miller, W. B., & Finan, E. (2006). Root-zone alcohol is an effective growth retardant for paperwhite narcissus. HortTechnology, 16, 294–296.

    Google Scholar 

  • Neumann, P. M. (1995). The role of cell wall adjustment in plant resistance to water deficits. Crop Science, 35, 1258–1266.

    Article  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • O’Donoghue, E. M., & Somerfield, S. D. (1998). Cell walls of asparagus after harvest. Acta Horticulturae, 464, 447–450.

    Google Scholar 

  • Plotto, A., Bai, J., Narciso, J. A., Brecht, J. K., & Baldwin, E. A. (2006). Ethanol vapor prior to processing extends fresh-cut mango storage by decreasing spoilage, but does not always delay ripening. Postharvest Biology and Technology, 39, 134–145.

    Article  CAS  Google Scholar 

  • Podd, L. A., & van Staden, J. (1998). The role of ethanol and acetaldehyde in flower senescence and fruit ripening—a review. Plant Growth Regulation, 26, 183–189.

    Article  CAS  Google Scholar 

  • Podd, L. A., Hills, P. N., & van Staden, J. (2002). Physiological responses and extension of vase life of cut carnation flowers treated with ethanol and acetaldehyde. II. Protein content and enzyme activity. Plant Growth Regulation, 38, 107–117.

    Article  CAS  Google Scholar 

  • Poubol, J., Lichanporn, I., Puthmee, T., & Kanlayanarat, S. (2010). Effect of ultraviolet-C irradiation on quality and natural microflora of asparagus spears. Acta Horticulturae, 875, 257–262.

    Google Scholar 

  • Pun, U. K., Niki, T., & Ichimura, K. (2013). Ethanol reduces sensitivity and delays petal senescence in cut Tweedia caerulea flowers. Plant Growth Regulation, 69, 125–130.

    Article  CAS  Google Scholar 

  • Reiter, W.-D. (2002). Biosynthesis and properties of the plant cell wall. Current Opinion in Plant Biology, 5, 536–542.

    Article  CAS  Google Scholar 

  • Rodríguez, R., Jiménez, A., Guillén, R., Heredia, A., & Fernández-Bolanos, J. (1999). Postharvest changes in white asparagus cell wall during refrigerated storage. Journal of Agricultural and Food Chemistry, 47, 3551–3557.

    Article  Google Scholar 

  • Rodríguez-Arcos, R. C., Smith, A. C., & Waldron, K. W. (2004). Effects of storage on wall-bound phenolics in green asparagus. Journal of Agricultural and Food Chemistry, 52, 4740–4750.

    Article  Google Scholar 

  • Saltveit, M. E. (1988). Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening. Plant Physiology, 88, 143–147.

    Article  Google Scholar 

  • Saltveit, M. E. (1989). Effect of alcohols and their interaction with ethylene on the ripening of epidermal pericarp discs of tomato fruit. Plant Physiology, 90, 167–174.

    Article  CAS  Google Scholar 

  • Saltveit, M. E. (1994). Exposure to alcohol vapours reduces chilling-induced injury of excised cucumber cotyledons, but not of seedlings or excised hypocotyl segments. Journal of Experimental Botany, 45, 813–821.

    Article  CAS  Google Scholar 

  • Saltveit, M. E., Peiser, G., & Rab, A. (2004). Effect of acetaldehyde, arsenite, ethanol, and heat shock on protein synthesis and chilling sensitivity of cucumber radicles. Physiologia Plantarum, 120, 556–562.

    Article  CAS  Google Scholar 

  • Simón, A., González-Fandos, E., & Tobar, V. (2004). Influence of washing and packaging on the sensory and microbiological quality of fresh peeled white asparagus. Journal of Food Science, 69, FMS6–FMS12.

    Article  Google Scholar 

  • Siomos, A., Sfakiotakis, E. M., & Dogras, C. C. (2000). Modified atmosphere packaging of white asparagus spears: composition, color and textural quality responses to temperature and light. Scientia Horticulturae, 84, 1–13.

    Article  Google Scholar 

  • Sothornvit, R., & Kiatchanapaibul, P. (2009). Quality and shelf-life of washed fresh-cut asparagus in modified atmosphere packaging. LWT - Food Science and Technology, 42, 1484–1490.

    Article  CAS  Google Scholar 

  • Statistisches Bundesamt, Pressemitteilung Nr. 275, 22.07.2011. Available at: https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2011/07/PD11_275_412.html.

  • Stephane, H. C. H., Anthony, L., & Claude, H. (1992). Activities of enzymes involved in lignification during the postharvest storage of etiolated asparagus spears. Physiologia Plantarum, 86, 474–478.

    Article  Google Scholar 

  • Tzortzakis, N. G., & Economakis, C. D. (2007). Maintaining postharvest quality of the tomato fruit by employing methyl jasmonate and ethanol vapour treatment. Journal of Food Quality, 30, 567–580.

    Article  CAS  Google Scholar 

  • Van Soest, P. J., & Goering, H. K. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for determination of fibre and lignin. Journal of the Association of Official Agricultural Chemists, 46, 829–835.

    Google Scholar 

  • Vance, C., Kirk, T., & Sherwood, R. (1980). Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259–288.

    Article  CAS  Google Scholar 

  • Villanueva, M. J., Tenorio, M. D., Sagardoy, M., Redondo, A., & Saco, M. D. (2005). Physical, chemical, histological and microbiological changes in fresh green asparagus (Asparagus officinalis, L.) stored in modified atmosphere packaging. Food Chemistry, 91, 609–619.

  • Voesenek, L. A. C. J., & van der Veen, R. (1994). The role of phytohormones in plant stress: too much or too little water. Acta Botanica Neerlandica, 43, 91–127.

    Article  CAS  Google Scholar 

  • Waldron, K. W., & Selvendran, R. R. (1990). Effect of maturation and storage on asparagus (Asparagus officinalis) cell wall composition. Physiologia Plantarum, 80, 576–583.

    Article  CAS  Google Scholar 

  • Wang, K., Jin, P., Tang, S., Shang, H., Rui, H., Di, H., Cai, Y., & Zheng, Y. (2011). Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 22, 82–87.

    Article  Google Scholar 

  • Wolf, S., Hématy, K., & Höfte, H. (2012). Growth control and cell wall signaling in plants. Annual Review of Plant Biology, 63, 381–407.

    Article  CAS  Google Scholar 

  • Wu, Y., & Cosgrove, D. J. (2000). Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany, 51, 1543–1553.

    Article  CAS  Google Scholar 

  • Yang, S., & Hoffman, N. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189.

    Article  CAS  Google Scholar 

  • Yuen, C. M. C., Paton, J. E., Hanawati, R., & Shen, L. Q. (1995). Effects of ethanol, acetaldehyde and ethyl formate vapour on the growth of Penicillium italicum and P. digitatum on oranges. The Journal of Horticultural Science and Biotechnology, 70, 81–84.

    CAS  Google Scholar 

  • Zhang, W. S., Li, X., Wang, X. X., Wang, G. Y., Zheng, J. T., Abeysinghe, D. C., Ferguson, I. B., & Chen, K. S. (2007). Ethanol vapour treatment alleviates postharvest decay and maintains fruit quality in Chinese bayberry. Postharvest Biology and Technology, 46, 195–198.

    Article  CAS  Google Scholar 

  • Zurera, G., Muńoz, M., Moreno, R., Gonzalez, J. A., Amaro, M. A., & Ros, G. (2000). Cytological and compositional evaluation of white asparagus spears as a function of variety, thickness, portion and storage conditions. Journal of the Science of Food and Agriculture, 80, 335–340.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Veronika Egert, Susanne Meier, Corinna Rolleczek, Janett Schiffmann and Gabriele Wegner for doing an excellent job in the laboratories and Prof. Craig E. Martin, KU Lawrence, for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner B. Herppich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herppich, W.B., Huyskens-Keil, S. & Hassenberg, K. Impact of Ethanol Treatment on the Chemical Properties of Cell Walls and Their Influence on Toughness of White Asparagus (Asparagus officinalis L.) Spears. Food Bioprocess Technol 8, 1476–1484 (2015). https://doi.org/10.1007/s11947-015-1507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1507-y

Keywords

Navigation