Skip to main content
Log in

A Novel Strategy Using Pulsed Electric Fields to Modify the Thermostability of Ascorbic Acid Oxidase in Different Carrot Cultivars

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The purpose of this research was to study whether pulsed electric fields (PEFs) could reduce variability in the activity and thermostability of ascorbic acid oxidase (AAO) in the purée of different carrot cultivars, i.e. Daucus carota cv. Nantes, White Belgian, Solar Yellow, Nutri Red and Purple Haze. The carrot purée was treated at different energy inputs (35 and 300 kJ/kg) and electric field strengths (0.3, 0.5 and 0.8 kV/cm). AAO catalytic kinetics was described using the Michaelis-Menten model to estimate V max and K M . The catalytic kinetics of AAO varied greatly depending on cultivar with the highest V max in White Belgian and the lowest V max in Nantes. Energy input of 300 kJ/kg significantly (p < 0.05) reduced the V max in White Belgian and Yellow Solar and increased the K M in Nantes and Nutri Red. A first-order reaction model was used to describe AAO thermal inactivation kinetics (60–70 °C) and to estimate the inactivation rate constant (k) at a reference temperature of 65 °C (k ref ) and the temperature dependency of k (E a ). AAO in Purple Haze was found to have the lowest E a and the highest k ref , while the highest E a was observed in Yellow Solar and the lowest k ref in Nantes. This study demonstrated that PEF treatment at various electric field strengths changed the thermostability of AAO. PEF treatment of 0.8 kV/cm and 35 kJ/kg reduced the variability of AAO thermostability in the purée of these different carrot cultivars and consequently narrowed the window of processing temperature and time combinations to achieve the same degree of AAO inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, J. B. (1991). Review: enzyme inactivation during heat processing of food-stuffs. International Journal of Food Science and Technology, 26(1), 1–20.

    Article  CAS  Google Scholar 

  • Amon, A., & Markakis, P. (1973). Properties of ascorbate oxidase isozymes. Phytochemistry, 12(9), 2127–2132.

    Article  CAS  Google Scholar 

  • Bazhal, M. I., Lebovka, N. I., & Vorobiev, E. (2003). Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues. Biosystems Engineering, 86(3), 339–345.

    Article  Google Scholar 

  • Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., & Cappelloni, M. (2002). Modulation of antioxidant compounds in organic vs conventional fruit (Peach, Prunus persica L., and Pear, Pyrus communis L.). Journal of Agricultural and Food Chemistry, 50(19), 5458–5462.

    Article  CAS  Google Scholar 

  • Carvalho, L. B., Jr., Lima, C. J., & Medeiros, P. H. (1981). Ascorbate oxidase from Cucurbita maxima. Phytochemistry, 20(10), 2423–2424.

    Article  CAS  Google Scholar 

  • Castro, A. J., Swanson, B. G., Barbosa-Cánovas, G. V., & Zhang, Q. H. (2001). Pulsed electric field modification of milk alkaline phosphatase activity. In G. V. Barbosa-Cánovas, Q. H. Zhang, & G. Tabilo-Munizaga (Eds.), Pulsed electric fields in food processing: fundamental aspects and applications (food preservation technology). Pennsylvania: Technomic Publishing Company.

    Google Scholar 

  • Catalano, A. E., Ingallinera, B., Todaro, A., Rapisarda, P., & Spagna, G. (2009). Degradative enzymatic activities in fresh-cut blood-orange slices during chilled-storage. International Journal of Food Science and Technology, 44(5), 1041–1049.

    Article  CAS  Google Scholar 

  • Di Venere, A., Nicolai, E., Rosato, N., Rossi, A., Finazzi Agrò, A., & Mei, G. (2011). Characterization of monomeric substrates of ascorbate oxidase. FEBS Journal, 278(9), 1585–1593.

    Article  Google Scholar 

  • Elez-Martínez, P., Aguiló-Aguayo, I., & Martín-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 86(1), 71–81.

    Article  Google Scholar 

  • Elez-Martínez, P., Suárez-Recio, M., & Martín-Belloso, O. (2007). Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. Journal of Food Engineering, 78(1), 184–193.

    Article  Google Scholar 

  • Giner, J., Gimeno, V., Espachs, A., Elez, P., Barbosa-Cánovas, G. V., & Martı́n, O. (2000). Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Science and Emerging Technologies, 1(1), 57–67.

    Article  CAS  Google Scholar 

  • Giner, J., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. (2001). Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Science and Technology International, 7(4), 339–345.

    CAS  Google Scholar 

  • Giner, J., Ortega, M., Mesegué, M., Gimeno, V., Barbosa-Cánovas, G. V., & Martín, O. (2002). Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. Journal of Food Science, 67(4), 1467–1472.

    Article  CAS  Google Scholar 

  • Grattan, S. R., & Grieve, C. M. (1998). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78(1–4), 127–157.

    Article  Google Scholar 

  • Hallaway, M., Phethean, P. D., & Taggart, J. (1970). A critical study of the intracellular distribution of ascorbate oxidase and a comparison of the kinetics of the soluble and cell-wall enzyme. Phytochemistry, 9(5), 935–944.

    Article  CAS  Google Scholar 

  • Holdsworth, S. D., & Simpson, R. (2007). Sterilization, pasteurization and cooking criteria. In S. D. Holdsworth & R. Simpson (Eds.), Thermal processing of packaged foods (pp. 123–141). Food Engineering Series): Springer US.

    Chapter  Google Scholar 

  • Houben, K., Kermani, Z. J., Van Buggenhout, S., Jolie, R. P., Van Loey, A. M., & Hendrickx, M. E. (2013a). Thermal and high-pressure stability of pectinmethylesterase, polygalacturonase, β-galactosidase and α-arabinofuranosidase in a tomato matrix: towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology, 6(12), 3368–3380.

    Article  CAS  Google Scholar 

  • Houben, K., Kermani, Z. J., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2013b). Thermal and high-pressure stability of pectin-converting enzymes in broccoli and carrot purée: towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology, 52, 1–12.

    Google Scholar 

  • Kim, Y. R., Yu, S. W., Lee, S. R., Hwang, Y. T., & Kang, S. O. (1996). A heme-containing ascorbate oxidase from Pleurotus ostreatus. Journal of Biological Chemistry, 271(6), 3105–3111.

    Article  CAS  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346.

    Article  Google Scholar 

  • Lee, S. R., Joo, W. J., Baek, Y. U., Lee, Y. K., Yu, S. W., Kim, Y. R., et al. (2009). Intracellular substrates of a heme-containing ascorbate oxidase in Pleurotus ostreatus. The Journal of Microbiology, 47(2), 178–186.

    Article  CAS  Google Scholar 

  • Leong, S. Y., & Oey, I. (2012). Effect of endogenous ascorbic acid oxidase activity and stability on vitamin C in carrots (Daucus carota subsp. sativus) during thermal treatment. Food Chemistry, 134(4), 2075–2085.

    Article  CAS  Google Scholar 

  • Leong, S. Y., & Oey, I. (2014). Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). Food Chemistry, 146C, 538–547.

    Article  Google Scholar 

  • Maccarrone, M., D'Andrea, G., Salucci, M. L., Avigliano, L., & Finazzi-Agrò, A. (1993). Temperature, pH and UV irradiation effects on ascorbate oxidase. Phytochemistry, 32(4), 795–798.

    Article  CAS  Google Scholar 

  • Min, S., Min, S. K., & Zhang, Q. H. (2003). Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science, 68(6), 1995–2001.

    Article  CAS  Google Scholar 

  • Morris, H. J., Weast, C. A., & Lineweaver, H. (1946). Seasonal variation in the enzyme content of eleven varieties of carrots. Botanical Gazette, 107(3), 362–372.

    Article  CAS  Google Scholar 

  • Mosery, O., & Kanellis, A. K. (1994). Ascorbate oxidase of Cucumis melo L. var. reticulatus: purification, characterization and antibody production. Journal of Experimental Botany, 45(6), 717–724.

    Article  Google Scholar 

  • Munyaka, A. W., Makule, E. E., Oey, I., Van Loey, A. M., & Hendrickx, M. E. (2010). Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica). Journal of Food Science, 75(4), C336–C340.

    Article  CAS  Google Scholar 

  • Nicolai, E., Di Venere, A., Rosato, N., Rossi, A., Finazzi Agro, A., & Mei, G. (2006). Physico-chemical properties of molten dimer ascorbate oxidase. FEBS Journal, 273(22), 5194–5204.

    Article  CAS  Google Scholar 

  • Porto, T. S., Porto, C. S., Cavalcanti, M. T. H., Filho, J. L. L., Perego, P., Porto, A. L. F., et al. (2006). Kinetic and thermodynamic investigation on ascorbate oxidase activity and stability of a Cucurbita maxima extract. Biotechnology Progress, 22(6), 1637–1642.

    Article  CAS  Google Scholar 

  • Raseetha, S., Leong, S. Y., Burritt, D. J., & Oey, I. (2013). Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing. Food Chemistry, 138(2–3), 1360–1369.

    Article  CAS  Google Scholar 

  • Rayan, A. M. M., Gab-Alla, A. A., Shatta, A. A., & El-Shamei, Z. A. S. (2011). Thermal inactivation kinetics of quality-related enzymes in cauliflower (Brassica oleracea var. botrytis). European Food Research and Technology, 232(2), 319–326.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2008). Combined effect of temperature and pulsed electric fields on soya milk lipoxygenase inactivation. European Food Research and Technology, 227(5), 1461–1465.

    Article  CAS  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). Effect of high intensity pulsed electric fields on enzymes and vitamins in bovine raw milk. International Journal of Dairy Technology, 62(1), 1–6.

    Article  CAS  Google Scholar 

  • Saari, N., Fujita, S., Miyazoe, R., & Okugawa, M. (1995). Distribution of ascorbate oxidase activities in the fruits of family Cucurbitaceae and some of their properties. Journal of Food Biochemistry, 19(4), 321–327.

    Article  Google Scholar 

  • Saari, N., Fujita, S., Yamaguchi, S., & Tono, T. (1996). Distribution of ascorbate oxidase in citrus fruits. Food Science and Technology International, Tokyo, 2(3), 154–156.

    Article  CAS  Google Scholar 

  • Saari, N., Osman, A., Selamat, J., & Fujita, S. (1999). Ascorbate oxidase from starfruit (Averrhoa carambola): preparation and its application in the determination of ascorbic acid from fruit juices. Food Chemistry, 66(1), 57–61.

    Article  CAS  Google Scholar 

  • Sampedro, F., Geveke, D. J., Fan, X. T., & Zhang, H. Q. (2009). Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice–milk based beverage. Innovative Food Science and Emerging Technologies, 10(4), 463–469.

    Article  CAS  Google Scholar 

  • Schilling, S., Schmid, S., Jäger, H., Ludwig, M., Dietrich, H., Toepfl, S., et al. (2008). Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation. Journal of Agricultural and Food Chemistry, 56(12), 4545–4554.

    Article  CAS  Google Scholar 

  • Shimada, Y., & Ko, S. (2008). Ascorbic acid and ascorbic acid oxidase in vegetables. Chugokugakuen Journal, 7, 7–10.

    Google Scholar 

  • Stevanato, R., Avigliano, L., Finazzi-Agrò, A., & Rigo, A. (1985). Determination of ascorbic acid with immobilized green zucchini ascorbate oxidase. Analytical Biochemistry, 149(2), 537–542.

    Article  CAS  Google Scholar 

  • Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195–206.

    Article  Google Scholar 

  • Van Loey Indrawati, A. M., Ludikhuyze, L. R., & Hendrickx, M. E. (1999). Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L.): a kinetic inactivation study. Biotechnology Progress, 15(2), 273–277.

    Article  CAS  Google Scholar 

  • Van Loey, A. M., Smout Indrawati, C., & Hendrickx, M. E. (2002a). Inactivation of enzymes: from experimental design to kinetic modeling. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology (pp. 49–58). New York: CRC Press.

    Google Scholar 

  • Van Loey, A. M., Verachtert, B., & Hendrickx, M. E. (2002b). Effects of high electric field pulses on enzymes. Trends in Food Science and Technology, 12(3–4), 94–102.

    Google Scholar 

  • Wawire, M., Oey, I., Mathooko, F., Njoroge, C., Shitanda, D., & Hendrickx, M. E. (2011). Thermal stability of ascorbic acid and ascorbic acid oxidase in African cowpea leaves (Vigna unguiculata) of different maturities. Journal of Agricultural and Food Chemistry, 59(5), 1774–1783.

    Article  CAS  Google Scholar 

  • Yahia, E. M., Contreras-Padilla, M., & Gonzalez-Aguilar, G. (2001). Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT - Food Science and Technology, 34(7), 452–457.

    Article  CAS  Google Scholar 

  • Yeom, H. W., Zhang, Q. H., & Chism, G. W. (2002). Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. Journal of Food Science, 67(6), 2154–2159.

    Article  CAS  Google Scholar 

  • Zhang, Q. H., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 25(2), 261–281.

    Article  Google Scholar 

  • Zhao, W., Yang, R. J., & Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science and Technology, 27(2), 83–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Sze Ying Leong acknowledges University of Otago (UO) Doctoral Scholarship towards her PhD study. We also thank Susan Mackenzie (Botany, UO) for taking care of the carrots during their cultivation in the glasshouse. Authors are grateful to Jo’ann Ayers (Food Science, UO) for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrawati Oey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, S.Y., Oey, I. & Burritt, D.J. A Novel Strategy Using Pulsed Electric Fields to Modify the Thermostability of Ascorbic Acid Oxidase in Different Carrot Cultivars. Food Bioprocess Technol 8, 811–823 (2015). https://doi.org/10.1007/s11947-014-1448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1448-x

Keywords

Navigation