Skip to main content
Log in

Application of Wavelet Analysis to Spectral Data for Categorization of Lamb Muscles

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Application of wavelet analysis to near-infrared (NIR) hyperspectral imaging data was exploited for categorization of lamb muscles in this study. A variety of common wavelet transforms was investigated to identify the best wavelet features for categorization of lamb muscles. The fifth-order Daubechies wavelet (“db5”) was found to be the best wavelet function for decomposition of lamb spectral signal. Features of wavelet coefficients extracted from db5 wavelet at the fifth decomposition level were then used as the inputs of least-squares support vector machine (LS-SVM) for developing classification models. Principal component analysis (PCA) was used for dimensionality reduction. Classification performance of LS-SVM classifiers in tandem with wavelet transform and PCA was compared with the LS-SVM models based on original, first derivative, second derivative, smoothing, standard normal variate (SNV), and multiplicative scatter correction (MSC) spectral data; then, the overall correct classification performance for the training and test sets using combination with wavelet approximation and detail coefficients in fifth decomposition scale and PCA was 100 and 96.15 %, respectively. In addition, the developed classification models were successfully applied to the hyperspectral images for obtaining classification maps and the kappa coefficient of 0.83 was obtained for the visual classification. The results revealed that the application of wavelet analysis has a great potential for categorization of lamb muscles in tandem with multivariate analysis and image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abd El-Kawy, O. R., Rod, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483–494.

    Article  Google Scholar 

  • Andres, S., Murray, I., Navajas, E. A., Fisher, A. V., Lambe, N. R., & Bunger, L. (2007). Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Science, 76(3), 509–516.

    Article  CAS  Google Scholar 

  • Barbin, D., Sun, D.-W., & Su, C. (2013). NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innovative Food Science & Emerging Technologies, 18, 226–236.

    Article  CAS  Google Scholar 

  • Bossu, J., Gee, C., Jones, G., & Truchetet, F. (2009). Wavelet transform to discriminate between crop and weed in perspective agronomic images. Computers and Electronics in Agriculture, 65(1), 133–143.

    Article  Google Scholar 

  • Braga, R. A., Horgan, G. W., Enes, A. M., Miron, D., Rabelo, G. F., & Filho, J. (2007). Biological feature isolation by wavelets in biospeckle laser images. Computers and Electronics in Agriculture, 58(2), 123–132.

    Article  Google Scholar 

  • Candolfi, A., Wu, W., Massart, D. L., & Heuerding, S. (1998). Comparison of classification approaches applied to NIR-spectra of clinical study lots. Journal of Pharmaceutical and Biomedical Analysis, 16(8), 1329–1347.

    Article  CAS  Google Scholar 

  • Cen, H. Y., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72–83.

    Article  CAS  Google Scholar 

  • Chandraratne, M. R., Samarasinghe, S., Kulasiri, D., & Bickerstaffe, R. (2006). Prediction of lamb tenderness using image surface texture features. Journal of Food Engineering, 77(3), 492–499.

    Article  Google Scholar 

  • Chao, K., Yang, C. C., Chen, Y. R., Kim, M. S., & Chan, D. E. (2007). Hyperspectral-multispectral line-scan imaging system for automated poultry carcass inspection applications for food safety (1). Poultry Science, 86(11), 2450–2460.

    Article  CAS  Google Scholar 

  • Cheng, T., Rivard, B., & Sanchez-Azofeifa, A. (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115(2), 659–670.

    Article  Google Scholar 

  • Choudhary, R., Paliwal, J., & Jayas, D. S. (2008). Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Biosystems Engineering, 99(3), 330–337.

    Article  Google Scholar 

  • Choudhary, R., Mahesh, S., Paliwal, J., & Jayas, D. S. (2009). Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosystems Engineering, 102(2), 115–127.

    Article  Google Scholar 

  • Delgado, A. E., & Sun, D-W. (2002). Desorption isotherms for cooked and cured beef and pork. Journal of Food Engineering, 51(2), 163–170.

  • Delgado, A. E., Zheng, L., & Sun, D-W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2(3), 263–270.

  • Deng, X. Y., Wang, Q. H., Chen, H., & Xie, H. (2010). Eggshell crack detection using a wavelet-based support vector machine. Computers and Electronics in Agriculture, 70(1), 135–143.

    Article  Google Scholar 

  • Du, C. J., & Sun, D-W. (2005). Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering, 68(3), 277–287.

  • ElMasry, G., Sun, D-W., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International, 44(9), 2624–2633.

  • ElMasry, G., Sun, D-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127–140.

  • Garini, Y., Young, I. T., & McNamara, G. (2006). Spectral imaging: principles and applications. Cytometry. Part A, 69A(8), 735–747.

    Article  Google Scholar 

  • Jackman, P., Sun, D.-W., & Allen, P. (2011). Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends in Food Science & Technology, 22(4), 185–197.

    Article  CAS  Google Scholar 

  • Jackman, P., Sun, D-W., Du, C-J., & Allen, P. (2008). Prediction of beef eating quality from colour, marbling and wavelet texture features. Meat Science, 80(4), 1273–1281.

  • Jun, Q., Ngadi, M., Wang, N., Gunenc, A., Monroy, M., Gariepy, C., et al. (2007). Pork quality classification using a hyperspectral imaging system and neural network. International Journal of Food Engineering, 3(1).

  • Kaewpijit, S., Le moigne, J., & El-Ghazawi, T. (2003). Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 863–871.

    Article  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104(3), 332–340.

    Article  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.

    Article  CAS  Google Scholar 

  • Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.

    Article  CAS  Google Scholar 

  • Lai, Y., Ni, Y., & Kokot, S. (2011). Discrimination of Rhizoma Corydalis from two sources by near-infrared spectroscopy supported by the wavelet transform and least-squares support vector machine methods. Vibrational Spectroscopy, 56(2), 154–160.

    Article  CAS  Google Scholar 

  • Li, J., Tan, J., & Shatadal, P. (2001). Classification of tough and tender beef by image texture analysis. Meat Science, 57(4), 341–346.

    Article  CAS  Google Scholar 

  • Liao, Y., Fan, Y., & Cheng, F. (2012). On-line prediction of pH values in fresh pork using visible/near-infrared spectroscopy with wavelet de-noising and variable selection methods. Journal of Food Engineering, 109(4), 668–675.

    Article  CAS  Google Scholar 

  • Liu, M. L., Liu, X. N., Wu, L., Duan, L. Q., & Zhong, B. Q. (2011). Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance. Computers & Geosciences, 37(9), 1254–1263.

    Article  CAS  Google Scholar 

  • Madden, H. H. (1978). Comments on the Savitzky-Golay convolution method for least-squares fit smoothing and differentiation of digital data. Analytical Chemistry, 50(9), 1383–1386.

    Article  CAS  Google Scholar 

  • Pelckmans, K., Suykens, J. A., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., & Vandewalle, J. (2002). LS-SVMlab: A matlab/c toolbox for least squares support vector machines. Tutorial. Leuven: KULeuven-ESAT.

    Google Scholar 

  • Peng, Z. K., Chu, F. L., & Tse, P. W. (2007). Singularity analysis of the vibration signals by means of wavelet modulus maximal method. Mechanical Systems and Signal Processing, 21(2), 780–794.

    Article  Google Scholar 

  • Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariepy, C., & Prasher, S. O. (2007). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Science, 76(1), 1–8.

    Article  CAS  Google Scholar 

  • Reum, D., & Zhang, Q. (2007). Wavelet based multi-spectral image analysis of maize leaf chlorophyll content. Computers and Electronics in Agriculture, 56(1), 60–71.

    Article  Google Scholar 

  • Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2005). On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Meat Science, 69(3), 409–415.

    Article  CAS  Google Scholar 

  • Singh, C. B., Choudhary, R., Jayas, D. S., & Paliwal, J. (2010). Wavelet analysis of signals in agriculture and food quality inspection. Food and Bioprocess Technology, 3(1), 2–12.

    Article  Google Scholar 

  • Sun, D-W. (1999). Comparison and selection of EMC ERH isotherm equations for rice. Journal of Stored Products Research, 35(3), 249–264.

  • Sun, D-W., & Brosnan, T. (2003). Pizza quality evaluation using computer vision - part 1 - Pizza base and sauce spread. Journal of Food Engineering, 57(1), 81–89.

  • Sun, D-W., & Byrne, C. (1998). Selection of EMC/ERH isotherm equations for rapeseed. Journal of Agricultural Engineering Research, 69(4), 307–315.

  • Sun, D-W., & Woods, J. L. (1997). Simulation of the heat and moisture transfer process during drying in deep grain beds. Drying Technology, 15(10), 2479–2508.

  • Sun, S., Guo, B., Wei, Y., & Fan, M. (2012). Classification of geographical origins and prediction of δ13C and δ15N values of lamb meat by near infrared reflectance spectroscopy. Food Chemistry, 135(2), 508–514.

    Article  CAS  Google Scholar 

  • Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  Google Scholar 

  • Valous, N. A., Mendoza, F., Sun, D-W., & Allen, P. (2009). Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81(1), 132–141.

  • Wang, L. J., & Sun, D-W. (2001). Rapid cooling of porous and moisture foods by using vacuum cooling technology. Trends in Food Science & Technology, 12(5–6), 174–184.

  • Wu, D., He, Y., & Feng, S. (2008). Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment. Analytica Chimica Acta, 610(2), 232–242.

    Article  CAS  Google Scholar 

  • Wu, J., Peng, Y., Li, Y.-Y., Wang, W., Chen, J., & Dhakal, S. (2012). Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. Journal of Food Engineering, 109(2), 267–273.

    Article  Google Scholar 

  • Xu, S. Y., Chen, X. F., & Sun, D-W. (2001). Preservation of kiwifruit coated with an edible film at ambient temperature. Journal of Food Engineering, 50(4), 211–216.

  • Yang, C.-C., Chao, K., & Kim, M. S. (2009). Machine vision system for online inspection of freshly slaughtered chickens. Sensing and Instrumentation for Food Quality and Safety, 3(1), 70–80.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Guangdong Province Government (China) for the support through the program of “Leading Talent of Guangdong Province (Da-Wen Sun).” This research was also supported by the Fundamental Research Funds for the Central Universities (2014ZM0027) and China Postdoctoral Science Foundation (2013 M530366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, H., Xie, A., Sun, DW. et al. Application of Wavelet Analysis to Spectral Data for Categorization of Lamb Muscles. Food Bioprocess Technol 8, 1–16 (2015). https://doi.org/10.1007/s11947-014-1393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1393-8

Keywords

Navigation