Skip to main content
Log in

Influence of Drying on the Retention of Olive Leaf Polyphenols Infused into Dried Apple

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Olive leaf extracts are rich in polyphenolic compounds. Their inclusion by impregnation in food solid matrices could improve the nutritional value and antioxidant capacity of dietary products, such as apple. Drying the food matrix is interesting not only because it speeds up the infusion but also because of its effect on the final stabilization of impregnated food. In this work, the influence of drying method on the retention of infused olive leaf polyphenols in a solid matrix (apple) was addressed. For this purpose, apple cubes (10 mm side) were initially dehydrated by freeze drying or hot air drying at 60 °C and then impregnated with the olive leaf extract. After the polyphenolic infusion, samples were dried for the final stabilization by means of three different methods: freeze drying and hot air drying at 60 °C both with and without ultrasound application. The retention of infused polyphenols in apple samples was evaluated by determining the total phenolic content and antioxidant capacity and quantifying the main olive leaf polyphenols by HPLC-DAD/MS–MS. The drying kinetics and the loss of apple solids during impregnation were modeled by using diffusion equations and the Weibull model, respectively. The role of fresh apple drying on the retention of infused olive leaf polyphenols was more significant than the further drying of the impregnated apple. Thus, hot air drying of fresh apple provided the highest antioxidant capacity (47.1 ± 2.6 mg Trolox/g d.m.), and oleuropein contents in the final dried apple of up to 1,928 mg/100 g d.m. were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FD:

Freeze drying

HAD:

Hot air drying

HAD-US:

Hot air drying assisted by power ultrasound

TPC:

Total phenolic content

GAE:

Gallic acid equivalents

AC:

Antioxidant capacity

FRAP:

Ferric-reducing ability power

HPLC-DAD:

High-performance liquid chromatography with diode array detection

MS–MS:

Tandem mass spectrometry

ESI:

Electrospray ionization

LC-MS:

Liquid chromatography-mass spectrometry

UV:

Ultraviolet

D w :

Effective moisture diffusivity

FD + I:

Freeze-dried apples impregnated with olive leaf extract

HAD + I:

Hot-air-dried apples impregnated with olive leaf extract

FD + I + HAD:

Freeze-dried apples impregnated with olive leaf extract and further hot air dried

HAD + I + HAD:

Hot-air-dried apples impregnated with olive leaf extract and further hot air dried

HAD + I + HAD-US:

Hot-air-dried apples impregnated with olive leaf extract and further ultrasonically assisted hot air dried

FD + I + HAD-US:

Freeze-dried apples impregnated with olive leaf extract and further ultrasonically assisted hot air dried

HAD + I + FD:

Hot-air-dried apples impregnated with olive leaf extract and further freeze dried

FD + I + FD:

Freeze-dried apples impregnated with olive leaf extract and further freeze dried

FD + FD:

Freeze-dried apples and further subjected again to freeze drying conditions

HAD + HAD:

Hot-air-dried apples and further subjected again to hot air drying

HAD + FD:

Hot-air-dried apples and further subjected to freeze drying

References

  • Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., Mulet, A., & García-Pérez, J. V. (2013a). Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 50, 189–196.

    Article  CAS  Google Scholar 

  • Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013b). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 17, 120–129.

    Article  CAS  Google Scholar 

  • AOAC (1997). Official methods of analysis. Association of official analytical chemists. Virginia, USA.

  • Barros, J. (2011). Innovations in food technology special issue. Food and Bioprocess Technology, 4, 831–832.

    Article  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  • Betoret, N., Puente, L., Díaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., et al. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56, 273–277.

    Article  Google Scholar 

  • Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., Scarpellini, A., & Lercker, G. (2008a). Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. European Food Research and Technology, 226, 1229–1237.

    Article  CAS  Google Scholar 

  • Blanda, G., Cerretani, L., Cardinali, A., Bendini, A., & Lercker, G. (2008b). Effect of frozen storage on the phenolic content of vacuum impregnated Granny Smith and Stark Delicious apple cvv. European Food Research and Technology, 227, 961–964.

    Article  CAS  Google Scholar 

  • Chemat, F., Huma, Z., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18, 813–835.

    Article  CAS  Google Scholar 

  • Cunha, L. M., Oliveira, F. A. R., & Oliveira, J. C. (1998). Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. Journal of Food Engineering, 37, 175–191.

    Article  Google Scholar 

  • Cunningham, S. E., McMinn, W. A., Magee, T. R., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15–24.

    Article  Google Scholar 

  • Esclápez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Review, 3, 108–120.

    Article  Google Scholar 

  • Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185.

    Article  Google Scholar 

  • Ferrando, M., Rózek, A., Achaerandio, I., & Güell, C. (2011). Grape phenolic infusion into solid foods: studies on mass transfer and antioxidant capacity. Procedia Food Science, 1, 1494–1501.

    Article  CAS  Google Scholar 

  • Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., & Renard, C. M. G. C. (2002). Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sun-drying. Journal of Agricultural and Food Chemistry, 50, 4537–4544.

    Article  CAS  Google Scholar 

  • García-Pérez, J. V., Cárcel, J. A., de la Fuente, S., & Riera, E. (2010). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(1), e539–e543.

    Google Scholar 

  • García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Pérez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265.

    Article  Google Scholar 

  • Jack, F. R., O’Neill, J., Piacentini, M. G., & Schroder, M. J. A. (1997). Perception of fruit as a snack: a comparison with manufactured snack foods. Food Quality and Preference, 8, 175–182.

    Article  Google Scholar 

  • Jankovié, M. (1993). Physical properties of convectively dried and freeze-dried berrylike fruits. Faculty of Agriculture, Belgrade, 38(2), 129–135.

    Google Scholar 

  • Joshi, A. P. K., Rupasinghe, H. P. V., & Khanizadeh, S. (2011). Impact of drying processes on bioactive phenolics, vitamin and antioxidant capacity of red-fleshed apple slices. Journal of Food Processing and Preservation, 35, 453–457.

    Article  CAS  Google Scholar 

  • Karakaya, S. E. S. (2009). Studies of olive tree leaf extract indicate several potential health benefits. Nutrition Reviews, 67, 632–639.

    Article  Google Scholar 

  • Khan, A. A., & Vincent, J. F. V. (1990). Anisotropy of apple parenchyma. Journal of the Science of Food and Agriculture, 52(4), 455–466.

    Article  Google Scholar 

  • Lewicki, P. P., & Jakubczyk, E. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64, 307–314.

    Article  Google Scholar 

  • Mahn, A., Zamorano, M., Barrientos, H., & Reyes, A. (2012). Optimization of a process to obtain selenium-enriched freeze-dried broccoli with high antioxidant properties. LWT--Food Science and Technology, 47, 267–273.

    Article  CAS  Google Scholar 

  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M., & Lerici, C. (2001). Review of non enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346.

    Article  Google Scholar 

  • Maskan, M. (2001). Drying shrinkage and rehydration characteristics of kiwifruits during microwave drying. Journal of Food Engineering, 48, 177–182.

    Article  Google Scholar 

  • Menéndez, J. A., Joven, J., Aragonès, G., Barrajón-Catalán, E., Beltrán-Debón, R., Borrás-Linares, I., et al. (2013). Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents. Cell Cycle, 12(4), 555–578.

    Article  Google Scholar 

  • Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852.

    Article  Google Scholar 

  • Noorbakhsh, R., Yaghmaee, P., & Durance, T. (2013). Radiant energy under vacuum (REV) technology: a novel approach for producing probiotic enriched apple snacks. Journal of Functional Foods, 5, 1049–1056.

    Article  Google Scholar 

  • Ortuño, C., Quiles, A., & Benedito, J. (2014). Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International. doi:10.1016/j.foodres.2014.05.012.

  • Ozuna, C., Gomez Alvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics. Sonochemistry. doi:10.1016/j.ultsonch.2013.12.015.

    Google Scholar 

  • Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48(8), 3396–3402.

    Article  CAS  Google Scholar 

  • Rózek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99, 142–150.

    Article  Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds-recent developments. Trends in Food Science & Technology, 12, 401–413.

    Article  CAS  Google Scholar 

  • Schulze, B., Hubbermann, E. M., & Schwarz, K. (2014). Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT--Food Science and Technology, 57, 426–433.

    Article  CAS  Google Scholar 

  • Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple varieties. Journal of Food Science, 66(9), 1341–1347.

    Article  CAS  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328.

    Article  Google Scholar 

  • Singleton, V. L., Ortholer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Spiess, W.E.L., & Behsnilian, D. (1998). Osmotic treatments in food processing. Current stage and future needs. In: A. Ziti (Eds.), Drying ’98, vol A, pp 47–56. Thessaloniki, Greece.

  • Van Buggenhout, S., Lille, M., Messagie, I., Van Loey, A., Autio, K., & Hendrickx, M. (2006). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: quantification and relation to texture loss. European Food Research and Technology, 222(5–6), 302–308.

    Google Scholar 

  • Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., et al. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132, 51–59.

    Article  Google Scholar 

  • Voda, A., Homan, N., Witek, M., Duijster, A., Van Dalen, G., Van der Sman, R., et al. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Research International, 49, 687–693.

    Article  CAS  Google Scholar 

  • Zandstra, E. H., Graaf, C. D., & Staveren, W. A. V. (2001). Influence of health and taste attitudes on consumption of low and high-fat foods. Food Quality and Preference, 12, 75–82.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Generalitat Valenciana (PROMETEO/2010/062, PROMETEO/2012/007, and ACOMP/2013/93) for its financial support. M. H. Ahmad Qasem was the recipient of a fellowship from the Ministerio de Educación, Cultura y Deporte of Spain (Programa de Formación de Profesorado Universitario del Programa Nacional de Formación de Recursos Humanos de Investigación). This research has also been supported by the Ministerio de Ciencia e Innovación (DPI2012-37466-C03-03, AGL2011-29857-C03-03) and CIBERobn (CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. García-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad-Qasem, M.H., Santacatalina, J.V., Barrajón-Catalán, E. et al. Influence of Drying on the Retention of Olive Leaf Polyphenols Infused into Dried Apple. Food Bioprocess Technol 8, 120–133 (2015). https://doi.org/10.1007/s11947-014-1387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1387-6

Keywords

Navigation