Skip to main content

Advertisement

Log in

Effect of pH on Enzyme Inactivation Kinetics in High-Pressure Processed Pineapple (Ananas comosus L.) Puree Using Response Surface Methodology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effect of pH and high-pressure process treatments viz. pressure, temperature, and dwell time on inactivation of polyphenoloxidase (PPO), peroxidase (POD), bromelain (BRM), and pectinmethylesterase (PME) in pineapple puree was studied. Experiments were conducted according to rotatable central composite design (RCCD) within the range (−α to + α) of 100–600 MPa, 20–70 °C, and 0–30 min at three different pH levels (3.0, 3.5, and 4.0) followed by analysis through response surface methodology (RSM). Enzyme inactivation was significantly (p < 0.05) affected by all the process parameters, and temperature had the highest contribution among those. Enzyme inactivation kinetics was demonstrated with dynamic pressure-buildup period (pressure pulse effect) followed by static pressure-hold period (isobaric-isothermal first-order inactivation). Increased pulse effect (PE in log scale) values were obtained at lower pH and higher values of both pressure and temperature. Maximum PE values, obtained at 500 MPa/60 °C/pH 3, were 0.332, 0.319, 0.392, and 0.278 for PPO, POD, PME, and BRM, respectively. The inactivation rate (k in min−1) revealed that PPO was the most resistive (k ranged between 0.0020 and 0.0379 min−1) when compared with other three enzymes within the experimental domain. Increased k at lower pH with constant pressure and temperature depicted that pH had negative effect on the inactivation process. The optimized conditions targeting maximum inactivation of PPO, POD and PME with simultaneous retention of BRM in pineapple puree, were 600 MPa/60 °C/9 min, 600 MPa/60 °C/10 min and 600 MPa/60 °C/10 min for the samples of pH 3.0, 3.5, and 4.0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anese, M., Nicoli, M. C., Dallaglio, G., & Lerici, C. R. (1994). Effect of high pressure treatments on peroxidase and polyphenoloxidase activities. Journal of Food Biochemistry, 18(4), 285–293.

    Article  Google Scholar 

  • Anthon, G. E., Sekine, Y., Watanabe, N., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry, 50(21), 6153–6159.

    Article  CAS  Google Scholar 

  • Balny, C., & Masson, P. (1993). Effects of high pressure on proteins. Food Reviews International, 9(4), 611–628.

    Article  CAS  Google Scholar 

  • Baş, D., & Boyaci, İ. H. (2007). Modeling and optimization I: usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845.

    Article  CAS  Google Scholar 

  • Basak, S., & Ramaswamy, H. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.

    Article  CAS  Google Scholar 

  • Basak, S., Ramaswamy, H. S., & Simpson, B. K. (2001). High-pressure inactivation of pectin methyl esterase in orange juice using combination treatments. Journal of Food Biochemistry, 25(6), 509–526.

    Article  CAS  Google Scholar 

  • Bayindirli, A., Alpas, H., Bozoglu, F., & Hizal, M. (2006). Efficiency of high-pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Journal of Food Control, 17(1), 52–58.

    Article  CAS  Google Scholar 

  • Boulekou, S. S., Katsaros, G. J., & Taoukis, P. S. (2010). Inactivation kinetics of peach pulp pectin methylesterase as a function of high hydrostatic pressure and temperature process conditions. Food and Bioprocess Technology, 3(5), 699–706.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  CAS  Google Scholar 

  • Buckow, R., Weiss, U., & Knorr, D. (2009). Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science and Emerging Technology, 10(4), 441–448.

    Article  CAS  Google Scholar 

  • Cano, M. P., Hernandez, A., & Ancos, B. D. (1997) High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.

  • Cárnara, M., Diez, C., & Torija, E. (1995). Chemical characterization of pineapple juices and nectars. Food Chemistry, 54(1), 93–100.

    Article  Google Scholar 

  • Chakraborty, S., Mishra, H. N., & Knorr, D. (2012). Strawberry enzyme inactivation by HPP: models & contours. Saarbruken: Lambert Academic Publishing.

    Google Scholar 

  • Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596.

    Article  CAS  Google Scholar 

  • Cheftel, J. C. (1992). Effects of high hydrostatic pressure on food constituents: An overview. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High pressure and biotechnology (Vol. 224, pp. 195–209). Montrouge: John Libbey Eurotext.

    Google Scholar 

  • Chutintrasri, B., & Noomhorm, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT--Food Science and Technology, 39(5), 492–495.

    Article  CAS  Google Scholar 

  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tausche, B. (2008). Extraction of anthocyanins from grape by-product assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies, 9(1), 85–91.

    Article  CAS  Google Scholar 

  • Corzo, C. A., Waliszewski, K. N., & Welti-Chanes, J. (2012). Pineapple fruit bromelain affinity to different protein substrates. Food Chemistry, 133(3), 631–635.

    Article  CAS  Google Scholar 

  • Dalmadi, I., Rapeanu, G., Van Loey, A., Smout, C., & Hendrickx, M. (2006). Characterization and inactivation by thermal and pressure processing of strawberry (Fragaria ananassa) polyphenol oxidase: a kinetic study. Journal of Food Biochemistry, 30(1), 56–76.

    Article  CAS  Google Scholar 

  • Fachin, D., Van Loey, A. M., Ly Nguyen, B., Verlent, I., & Hendrickx, M. E. (2003). Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 4(2), 135–142.

    Article  CAS  Google Scholar 

  • [FDA] US Food and Drug Administration (2007). Acidified and low-acid canned foods: approximate pH of foods and food products, 1–13. Available from: http://www.foodscience.caes.uga.edu/extension/documents/fdaapproximatephoffoodslacf-phs.pdf.

  • Giovane, A., Servillo, L., Balestrieri, C., Raiola, A., D'avino, R., Tamburrini, M., Ciardiello, M., & Camardella, L. (2004). Pectin methylesterase inhibitor. Biochim Biophys Acta-Proteins and Proteomics, 1696(2), 245–252.

    Article  CAS  Google Scholar 

  • Gliemmo, M. F., Latorre, M. E., Gerschenson, L. N., & Campos, C. A. (2009). Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT--Food Science and Technology, 42(1), 196–201.

    Article  CAS  Google Scholar 

  • González-Cebrino, F., García-Parra, J., Contador, R., Tabla, R., & Ramírez, R. (2012). Effect of high-pressure processing and thermal treatment on quality attributes and nutritional compounds of “Songold” plum purée. Journal of Food Science, 77(8), C866–C873.

    Article  CAS  Google Scholar 

  • Gross, M., & Jaenicke, R. (1994). Proteins under pressure. European Journal of Biochemistry, 221(2), 617–630.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J. A., Barbosa-Cánovas, G. V., & Swanson, B. G. (2005). High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International, 21(4), 411–425.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34(3), 440–444.

    Article  CAS  Google Scholar 

  • Heinz, V., & Buckow, R. (2009). Food preservation by high-pressure. Journal of Consumer Protection and Food Safety, 5(1), 73–81.

    Google Scholar 

  • Jutamongkon, R., & Charoenrein, S. (2010). Effect of temperature on the stability of fruit bromelain from smooth cayenne pineapple. Witthayasan Kasetsart, 44.

  • Katsaros, G., Katapodis, P., & Taoukis, P. (2009). Modeling the effect of temperature and high hydrostatic pressure on the proteolytic activity of kiwi fruit juice. Journal of Food Engineering, 94(1), 40–45.

    Article  CAS  Google Scholar 

  • Katsaros, G. I., Tsevdou, M., Panagiotou, T., & Taoukis, P. S. (2010). Kinetic study of high-pressure microbial and enzyme inactivation and selection of pasteurisation conditions for Valencia orange juice. International Journal of Food Science and Technology, 45(6), 1119–1129.

    Article  CAS  Google Scholar 

  • Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science and Emerging Technologies, 22, 40–50.

    Article  CAS  Google Scholar 

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High-pressure application for food biopolymers. Biochimica and Biophysica Acta, 1764(3), 619–631.

    Article  CAS  Google Scholar 

  • Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609–615.

    Article  CAS  Google Scholar 

  • Liavoga, A., & Matella, N. J. (2012). Enzymes in quality and processing of tropical and subtropical fruits. In M. Siddiq (Ed.), Tropical and subtropical fruits: postharvest physiology, processing and Ppackaging (pp. 35–51). Oxford: Wiley-Blackwell. doi:10.1002/9781118324097.ch3.

    Chapter  Google Scholar 

  • Liu, Y., Zhao, X., Zou, L., & Hu, X. (2013). Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Science and Technology International, 19(3), 197–207.

    Article  CAS  Google Scholar 

  • Ly-Nguyen, B., Loey, A. V., Smout, C., ErenÖzcan, S., Fachin, D., Verlent, I., Vu Truong, S., Duvetter, T., & Hendrickx, M. E. (2003). Mild-heat and high-pressure inactivation of carrot pectin methylesterase: a kinetic study. Journal of Food Science, 68(4), 1377–1383.

    Article  CAS  Google Scholar 

  • Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9), 340–346.

    Article  CAS  Google Scholar 

  • Maurer, H. R. (2001). Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences CMLS, 58(9), 1234–1245.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (pp. 363–510). New York: John Wiley & Sons Inc.

    Google Scholar 

  • Morild, E. (1981). The theory of pressure effects on enzymes. Advances in Protein Chemistry, 34, 93–166.

    Article  CAS  Google Scholar 

  • Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High-pressure effects on protein structure and function. Proteins: Structure, Function, and Bioinformatics, 24(1), 81–91.

    Article  CAS  Google Scholar 

  • Oey, I., Van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science and Technology, 19(6), 300–308.

    Article  CAS  Google Scholar 

  • Ortuño, C., Duong, T., Balaban, M., & Benedito, J. (2013). Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in Feijoa puree. The Journal of Supercritical Fluids, 82, 56–62. doi:10.1016/j.supflu.2013.06.005.

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science and Emerging Technologies, 10(3), 308–313.

    Article  CAS  Google Scholar 

  • Plaza, L., Muñoz, M., de Ancos, B., & Cano, M. P. (2003). Effect of combined treatments of high-pressure, citric acid and sodium chloride on quality parameters of tomato puree. European Food Research and Technology, 216(6), 514–519.

    CAS  Google Scholar 

  • Polydera, A., Galanou, E., Stoforos, N., & Taoukis, P. (2004). Inactivation kinetics of pectin methylesterase of Greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering, 62(3), 291–298.

    Article  Google Scholar 

  • Riahi, E., & Ramaswamy, H. S. (2003). High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation. Biotechnology Progress, 19(3), 908–914.

    Article  CAS  Google Scholar 

  • Riahi, E., & Ramaswamy, H. S. (2004). High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 64(2), 151–160.

    Article  Google Scholar 

  • Rodrigo, D., Jolie, R., Van Loey, A., & Hendrickx, M. (2006). Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase. European Food Research and Technology, 222(5–6), 636–642.

    Article  CAS  Google Scholar 

  • Smeller, L. (2002). Pressure-temperature phase diagram of biomolecules. In C. Balny, P. Masson, & K. Heremans (Eds.), Frontiers in high pressure biochemistry and biophysics (pp. 11–29). Amsterdam: Elsevier Science BV.

    Google Scholar 

  • Sulaiman, A., & Silva, F. V. (2013). High pressure processing, thermal processing and freezing of ‘Camarosa’strawberry for the inactivation of polyphenoloxidase and control of browning. Food Control, 33(2), 424–428. doi:10.1016/j.foodcont.2013.03.008.

    Article  CAS  Google Scholar 

  • Svensson, S., & Eriksson, C. (1972). Thermal inactivation of lipoxygenase from peas (Pisum sativum L.) I. Time-temperature relationships and pH dependence. Lebensmittel-Wissenschaft und Technologie, 5, 118–123.

    CAS  Google Scholar 

  • Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 200(1), 3–13.

    Article  CAS  Google Scholar 

  • Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies, 11(1), 52–60.

    Article  CAS  Google Scholar 

  • Vaclavik, V. A., & Christian, E. W. (2003). Essentials of food science. London: Springer.

    Book  Google Scholar 

  • Van den Broeck, I., Ludikhuyze, L., Weemaes, C., Van Loey, A., & Hendrickx, M. (1998). Kinetics for isobaric-isothermal degradation of l-ascorbic acid. Journal of Agricultural and Food Chemistry, 46(5), 2001–2006.

    Article  Google Scholar 

  • Van Eylen, D., Oey, I., Hendrickx, M., & Van Loey, A. (2008). Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. Journal of Food Engineering, 89(2), 178–186.

    Article  CAS  Google Scholar 

  • Vernwal, S., Yadav, R., & Yadav, K. (2006). Purification of a peroxidase from Solanum melongena fruit juice. Indian Journal of Biochemistry and Biophysics, 43(4), 239.

    CAS  Google Scholar 

  • Walker, J. R. (1995). Enzymatic browning in fruits: its biochemistry and control. Washington, DC: American Chemical Society.

    Google Scholar 

  • Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I., & Hendrickx, M. E. (1998). Kinetics of combined pressure–temperature inactivation of avocado polyphenoloxidase. Biotechnology and Bioengineering, 60(3), 292–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Rao, P.S. & Mishra, H.N. Effect of pH on Enzyme Inactivation Kinetics in High-Pressure Processed Pineapple (Ananas comosus L.) Puree Using Response Surface Methodology. Food Bioprocess Technol 7, 3629–3645 (2014). https://doi.org/10.1007/s11947-014-1380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1380-0

Keywords

Navigation