Skip to main content
Log in

Polypropylene/Montmorillonite Nanocomposites Containing Nisin as Antimicrobial Food Packaging

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Antimicrobial nanocomposites prepared with polypropylene, montmorillonite, and nisin were developed as food packaging material. Nisin was incorporated at 1, 2.5, and 5 % (w/w) and the characterization included antimicrobial, mechanical, thermal, barrier, and structural properties. Composite films inhibited the Gram-positive bacteria Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens when tested on skimmed milk agar plates. Antimicrobial activity was released in food simulants after contact with the nanocomposites, increasing until 48 h in solutions containing the surfactant Tween 20 or acetic acid. The addition of nisin caused no significant modification in deformation at break values as compared with control films. However, results of tensile strength and Young modulus differed significantly among samples. The higher value for Young modulus was observed for films with 5 % nisin. Water vapor barrier properties were not significantly different among control and antimicrobial films, whereas oxygen permeability was higher for nanocomposites containing nisin. The nanocomposites tested had no significant differences in the melting temperature (165 to 167 °C), and the crystallization temperature ranged from 121 to 129 °C, with lower values for films containing 5 % nisin. Scanning electron microscopy showed that nanocomposites containing 1 and 2.5 % nisin present similar homogeneity to that of control films. Some film properties were affected after nisin incorporation in polypropylene/montmorillonite matrix but active antimicrobial films were obtained, showing suitable behavior as a food packaging material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANVISA (2010). RDC 51, Regulamento técnico Mercosul sobre migração em materiais, embalagens e equipamentos plásticos destinados a entrar em contato com alimentos. Brasília, Brazil. Diario Oficial da União, 244, 75.

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • Arauz, L. J., Jozala, A. F., Mazzola, P. G., & Penna, T. C. V. (2009). Nisin biotechnological production and application: A review. Trends in Food Science and Technology, 20, 146–154.

    Article  Google Scholar 

  • Azeredo, H. M. C. (2013). Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, 30, 56–69.

    Article  Google Scholar 

  • Bastarrachea, L., Dhawan, S., Sablani, S. S., Mah, J., Kang, D., Zhang, J., et al. (2010). Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with nisin: Characterization and effectiveness against Listeria innocua. Journal of Food Science, 75, 215–224.

    Article  Google Scholar 

  • Castel, C. D., Oviedo, M. A. S., Liberman, S. A., Oliveira, R. V. B., & Mauler, R. S. (2011). Solvent-assisted extrusion of polypropylene/clay nanocomposites. Journal of Applied Polymer Science, 121, 389–394.

    Article  Google Scholar 

  • Chivrac, F., Kadlecová, Z., Pollet, V., & Avérous, L. (2006). Aromatic polyester-based nanobiocomposites: Elaboration, structural characterization and properties. Journal of Polymers and the Environment, 14, 393–401.

    Article  CAS  Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews in Microbiology, 3, 777–788.

    Article  CAS  Google Scholar 

  • Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.

    Article  Google Scholar 

  • Guiga, W., Swesi, Y., Galland, S., Peyrol, E., Degraeve, P., & Sebti, I. (2010). Innovative multilayer antimicrobial films made with nisaplin or pure nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innovative Food Science and Emerging Technologies, 11, 352–360.

    Article  CAS  Google Scholar 

  • Hatzigrigoriou, N. B., & Papaspyrides, C. D. (2011). Nanotechnology in plastic food-contact materials. Journal of Applied Polymer Science, 122, 3720–3739.

    Article  CAS  Google Scholar 

  • Joosten, H. M. L. J., & Nuñez, M. (1995). Adsorption of nisin and enterocin 4 to polypropylene and glass surfaces and its prevention by Tween 80. Letters in Applied Microbiology, 21, 389–392.

    Article  CAS  Google Scholar 

  • Jung, D. S., Bodyfelt, F. W., & Daeschel, M. A. (1992). Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in milk. Journal of Dairy Science, 75, 387–393.

    Article  CAS  Google Scholar 

  • La Storia, A., Mauriello, G., Villani, F., & Ercolini, D. (2013). Coating-activation and antimicrobial efficacy of different polyethylene films with a nisin-based solution. Food and Bioprocess Technology, 6, 2770–2779.

    Article  CAS  Google Scholar 

  • Lee, J., Sonb, S., & Hong, S. (2008). Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. Journal of Food Engineering, 86, 484–493.

    Article  CAS  Google Scholar 

  • Linssen, J. P. H., van Willige, R. W. G., & Dekker, M. (2003). Packaging-flavour interactions. In R. Ahvenainen (Ed.), Novel food packaging technologies (pp. 144–171). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Liu, L., Jin, T. Z., Coffin, D. R., & Hicks, K. B. (2009). Preparation of antimicrobial membranes: Coextrusion of poly(lactic acid) and Nisaplin in the presence of plasticizers. Journal of Agricultural and Food Chemistry, 57, 8392–8398.

    Article  CAS  Google Scholar 

  • Marcos, B., Aymerich, T., Garriga, M., & Arnau, J. (2013). Active packaging containing nisin and high pressure processing as post-processing listericidal treatments for convenience fermented sausages. Food Control, 30, 325–330.

    Article  CAS  Google Scholar 

  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41, 464–469.

    Article  CAS  Google Scholar 

  • Motta, A. S., & Brandelli, A. (2002). Characterization of an antimicrobial peptide produced by Brevibacterium linens. Journal of Applied Microbiology, 92, 63–67.

    Article  CAS  Google Scholar 

  • Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49, 3187–3204.

    Article  CAS  Google Scholar 

  • Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I., & Mauriello, G. (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polymer Engineering and Science, 1447–1455.

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380.

    Article  CAS  Google Scholar 

  • Ramos, M., Jimenez, A., Peltzer, M., & Garrigos, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109, 513–519.

    Article  CAS  Google Scholar 

  • Scaffaro, R., Botta, L., Marineo, S., & Puglia, A. M. (2011). Incorporation of nisin in poly(ethylene-co-vinyl acetate) films by melt processing: A study on the antimicrobial properties. Journal of Food Protection, 74, 1137–1143.

    Article  CAS  Google Scholar 

  • Siracusa, V. (2012). Food packaging permeability behaviour: A report. International Journal of Polymer Science, 2012, 1–11.

    Article  Google Scholar 

  • Siragusa, G. R., Cutter, C. N., & Willett, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16, 229–235.

    Article  CAS  Google Scholar 

  • Snyder, A. B., & Worobo, R. W. (2014). Chemical and genetic characterization of bacteriocins: Antimicrobial peptides for food safety. Journal of the Science of Food Agriculture, 94, 28–44.

    Article  CAS  Google Scholar 

  • Zehetmeyer, G., Soares, R. M. D., Brandelli, A., Mauler, R. S., & Oliveira, R. V. B. (2012). Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polymer Bulletin, 68, 2199–2217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies CNPq, CAPES, and PRONEX-FAPERGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meira, S.M.M., Zehetmeyer, G., Jardim, A.I. et al. Polypropylene/Montmorillonite Nanocomposites Containing Nisin as Antimicrobial Food Packaging. Food Bioprocess Technol 7, 3349–3357 (2014). https://doi.org/10.1007/s11947-014-1335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1335-5

Keywords

Navigation