Skip to main content
Log in

Immobilization of β-Glucosidase and Its Application for Enhancement of Aroma Precursors in Muscat Wine

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Enzyme immobilization is becoming more widely practised in biotechnology because of the advantages that this method brings. In this study, commercial β-glucosidase for aroma released in winemaking was immobilized on diverse supports (alginate–chitin, chitosan–chitin) by using different methods. It was found that the most appropriate matrix was chitosan by adsorption and reticulation. The optimal immobilization conditions were pH 3.5, immobilization time 120 min, and concentration of cross-linker glutaraldehyde 0.25 %. Stability of the immobilized enzymes was assessed, which revealed a number of advantages, such as a lower enzyme dose required for immobilization (367 times lower than the free enzyme dose recommended by the manufacturer), high stability over time, and reusability. In vitro studies of cellobiose and in vivo studies of wine and aroma precursors isolated from grape must yielded similar outcomes with respect to enzyme hydrolysis of free and immobilized proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arévalo-Villena, M., Díez Pérez, J., Úbeda, J. F., Navascués, E., & Briones, A. I. (2006a). A rapid method for quantifying aroma precursors: application to grape extract, musts and wines made from several varieties. Food Chemistry, 99, 183–190.

    Article  Google Scholar 

  • Arévalo-Villena, M., Úbeda-Iranzo, J., & Briones Pérez, A. (2006b). Relationship between Debaryomyces pseudopolymorphus enzymatic extracts and release of terpenes in wine. Biotechnology Progress, 22, 375–381.

    Article  Google Scholar 

  • Arévalo-Villena, M., Úbeda-Iranzo, J., Gundllapalli, S. B., Cordero Otero, R. R., & Briones-Pérez, A. I. (2006c). Characterization of an exocellular β-glucosidase from Debaryomyces pseudopolymorphus. Enzyme and Microbial Biotechnology, 39, 229–234.

    Article  Google Scholar 

  • Arica, M., Yakup, H., Öktem, H. A., Öktem, Z., & Tuncel, S. A. (1999). Immobilization of catalase in poly(isopropylacrylamide-co-hydroxyethylmethacrylate) thermally reversible hydrogels. Polymer International, 48, 879–884.

    Article  CAS  Google Scholar 

  • Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly_methylmethacrylate/microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalisis B: Enzymatic, 11, 127–138.

    Article  CAS  Google Scholar 

  • Baxter, A., Dillon, M., Taylor, K. D. A., & Roberts, G. A. F. (1992). Improved method for i.r. determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14, 166–169.

    Article  CAS  Google Scholar 

  • Bayonove, C., Gunata, Y., Sapis, J. C., Baumes, R. L., Dugelay, I., & Grassin, C. (1993). L’aumento degli aromi del vino mediante l’uso degli enzimi. Vignevini, 9, 33–36.

    Google Scholar 

  • Bernath, F.R., & Venkatasubramanian, K. (1986). Methods of enzyme immobilization. In: A. L. Demain, & N. A. Solomon (Eds.), Manual of industrial microbiology and biotechnology (pp. 230–247).

  • Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Busto, M. D., Ortega, N., & Perez-Mateos, M. (1995). Studies on microbial β-d-glucosidase immobilized in alginate gel beads. Process Biochemistry, 30, 421–426.

    CAS  Google Scholar 

  • Busto, M. D., Ortega, N., & Perez-Mateos, M. (1997). Effect of immobilization on the stability of bacterial and fungal β-d-glucosidase. Process Biochemistry, 32, 441–449.

    Article  CAS  Google Scholar 

  • Busto, M. D., García-Tramontín, K. E., Ortega, N., & Perez-Mateos, M. (2006). Preparation and properties of an immobilized pectinlyase for the treatment of fruit juices. Bioresearch Technology, 97, 1477–1483.

    Article  CAS  Google Scholar 

  • Chang, M. Y., & Juang, R. S. (2007). Use of chitosan–clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochemical Engineering Journal, 35, 93–98.

    Article  CAS  Google Scholar 

  • Darias, R., & Villalonga, R. (2001). Functional stabilization of cellulase by covalent modification with chitosan. Journal of Chemical Technology and Biotechnology, 76, 489–493.

    Article  CAS  Google Scholar 

  • Datta, S., Rene-Christena, L., Rajaram, Y.R.S. (2012). Enzyme immobilization: an overview on techniques and support materials. doi:10.1007/s13205-012-0071-7.

  • Erzheng, S., Tao, S., Liping, G., Qianying, D., & Zhengzhu, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Proccesing, 88, 83–89.

    Article  Google Scholar 

  • Fan, G., Xu, Y., Zhang, X., Lei, S., Yang, S., & Pan, S. (2011). Characteristics of immobilized β-glucosidase and its effect on bound volatile compounds in orange juice. International Journal of Food Science and Technology, 46, 2312–2320.

    Article  CAS  Google Scholar 

  • Figueira, J., Dias, F., Sato, H., Fernandes P. (2011). Screening of supports for the immobilization of β-glucosidase. Enzyme Research, ID 642460, doi:10.4061/2011/642460.

  • Gómez, L., Ramirez, H. L., Villalonga, M. L., Hernández, J., & Villalonga, R. (2006a). Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme and Microbial Technology, 38, 22–27.

    Article  Google Scholar 

  • Gómez, L., Ramírez, H. L., & Villalonga, R. (2006b). Immobilization of chitosan-invertase neoglycoconjugate on carboxymethylcellulose-modified chitin. Preparative Biochemistry and Biotechnology, 36, 259–271.

    Article  Google Scholar 

  • Gómez, L., Ramirez, H. L., Cabrera, G., Simpson, B. K., & Villalonga, R. (2008). Immobilization of invertase–chitosan conjugate on hyaluronic-acid-modified chitin. Journal of Food Biochemistry, 32, 264–277.

    Article  Google Scholar 

  • González-Pombo, P., Fariña, L., Carrau, F., Batista-Viera, F., & Brena, B. M. (2011). A novel extracelular β-glucosidase from Issatchenkia terrícola: isolation, immobilization and application for aroma enhancement of White Muscat wine. Process Biochemistry, 46, 385–389.

    Article  Google Scholar 

  • Gueguen, Y., Chemardin, P., Pien, S., Arnaud, A., & Galzy, P. (1997). Enhancement of aromatic quality of Muscat wine by the use of immobilized b-glucosidase. Journal of Biotechnology, 55, 151–156.

    Article  CAS  Google Scholar 

  • Gunata, Z., Bitteur, S., Brillouet, J. M., Bayonove, C., & Cordonnier, R. (1988). Sequential enzymic hydrolysis of potentially aromatic glycosides from grapes. Carbohydrate Research, 184, 139–149.

    Article  CAS  Google Scholar 

  • Guth, H. (1997). Identification of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3022–3026.

    Article  CAS  Google Scholar 

  • Ibarz, M., Ferreira, V., Hernandez-Orte, P., Loscos, N., & Cacho, J. (2006). Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavors precursors extracted from grapes. Journal of Chromatography. A, 1116, 217–229.

    Article  Google Scholar 

  • Jatinder, K., Bhupinder, S., Chadha, B. A. K., Ghatora, S. K., & Harvinder, S. S. (2007). Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology, 10, 260–270.

    Google Scholar 

  • Jung, Y. R., Shin, H. Y., Song, Y. S., Kim, S. B., & Kim, S. W. (2012). Enhancement of immobilized enzyme activity b pretreatment of β-glucosidase with cellobiose and glucose. Journal of Industrial and Engineering Chemistry, 18, 702–706.

    Article  CAS  Google Scholar 

  • Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  • Kurita, K., Sannan, T., & Iwakura, Y. (1977). Studies on chitin, 4: evidence for formation of block and random copolymers of N-acetyl-d-glucosamine and d-glucosamine by hetero- and homogeneous hydrolyses. Makromoleculare Chemie, 178, 3197–3202.

    Article  CAS  Google Scholar 

  • Latrasse, A. (1991). Fruits III. In: H. Maarse (Eds.), Volatile compounds in foods and beverages (pp. 329–387). New York: Dekkeer.

  • López-Tamames, E., Carro-Marino, N., Günata, Y. Z., Sapis, C., Baumes, R., & Bayonove, C. (1997). Potential aroma in several varieties of Spanish grapes. Journal of Agricultural and Food Chemistry, 45, 1729–1735.

    Article  Google Scholar 

  • Majeti, N., & Kumar, V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.

    Article  Google Scholar 

  • Martino, A., Durante, M., Pifferi, P. G., Spagna, G., & Bianchi, G. (1996a). Immobilization of β-glucosidase from a commercial preparation. Part 1. A comparative study of natural supports. Process Biochemistry, 31, 281–285.

    Article  CAS  Google Scholar 

  • Martino, A., Pifferi, P. G., & Spagna, G. (1996b). Immobilization of β-glucosidase from a commercial preparation. Part 2. Optimization of the immobilization process on chitosan. Process Biochemistry, 31, 287–293.

    Article  CAS  Google Scholar 

  • Palmeri, R., & Spagna, G. (2007). β-glucosidase in cellular and acellular form for winemaking application. Enzyme and Microbial Technology, 40, 382–389.

    Article  CAS  Google Scholar 

  • Ramírez, H. L., Briones, A. I., Úbeda, J., Arevalo, M. (2013). Immobilization of pectinase by adsorption on alginate-coated chitin support. Biotecnologia Aplicada. (in press).

  • Romo, S., Ramirez, H. L., Arévalo, M., & Úbeda, J. (2011). Immobilization of cellulase and xylanase on different supports. Current Opinion in Biotechnology, 22S, S82.

    Google Scholar 

  • Romo, S., Camacho, C., Gómez, L., Villalonga-Santana, R., Úbeda-Iranzo, J., Arévalo-Villena, M., et al. (2012). Inmovilización de celulasa sobre una matriz de quitina-quitsona. Revista Cubana de Química, 24, 57–64.

    Google Scholar 

  • Sánchez-Palomo, E., González-Viñas, M., Díaz-Maroto, M. C., Soriano-Pérez, A., & Pérez-Coello, M. S. (2007). Aroma potencial of Albillo wines and effect of skin-contact treatment. Food Chemistry, 103, 631–640.

    Article  Google Scholar 

  • Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Syntheis and Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  • Spagna, G., PiVeri, P. G., & Tramontini, M. (1995). Immobilization and stabilization of a pectinlyase on synthetic-polymers for application in the beverage industry. Journal of Molecular Catalysis A: Chemical, 101, 99–105.

    Article  CAS  Google Scholar 

  • Su, E., Xia, T., Gao, L., Dai, Q., & Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 88, 83–89.

    Article  CAS  Google Scholar 

  • Voirin, S. G., Baumes, R. L., Gunata, Z. Y., Bitteur, S. M., & Bayonove, C. L. (1992). Analytical methods for monoterpene glycosides in grape and wine. Part I. XAD-2 extraction and gas chromatographic-mass spectrometric determination of synthetic glycosides. Journal of Chromatography. A, 590, 313–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Junta de Comunicades de Castilla La Mancha for funding this research, which was performed in the framework of project “Inmovilización de enzimas para su aplicaciónen la industria agroalimentaria” (Ref: 2010-COB-3763), and the International Foundation for Science, Stockholm, Sweden and the Organization for the Prohibition of Chemical Weapons, The Hague, The Netherlands, through a Grant to Héctor L. Ramirez (Grant F/3004-67).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Arévalo-Villena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romo-Sánchez, S., Arévalo-Villena, M., García Romero, E. et al. Immobilization of β-Glucosidase and Its Application for Enhancement of Aroma Precursors in Muscat Wine. Food Bioprocess Technol 7, 1381–1392 (2014). https://doi.org/10.1007/s11947-013-1161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1161-1

Keywords

Navigation