Original Paper

Food and Bioprocess Technology

, Volume 6, Issue 12, pp 3353-3367

Novel Application of Neutron Radiography to Forced Convective Drying of Fruit Tissue

  • Thijs DefraeyeAffiliated withMeBioS, Department of Biosystems, University of Leuven Email author 
  • , Wondwosen AregawiAffiliated withMeBioS, Department of Biosystems, University of Leuven
  • , Saba SaneinejadAffiliated withChair of Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ)Laboratory for Building Science and Technology, Swiss Federal Laboratories for Materials Testing and Research (Empa)
  • , Peter VontobelAffiliated withPaul Scherrer Institute (PSI)
  • , Eberhard LehmannAffiliated withPaul Scherrer Institute (PSI)
  • , Jan CarmelietAffiliated withChair of Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ)Laboratory for Building Science and Technology, Swiss Federal Laboratories for Materials Testing and Research (Empa)
  • , Pieter VerbovenAffiliated withMeBioS, Department of Biosystems, University of Leuven
  • , Dominique DeromeAffiliated withLaboratory for Building Science and Technology, Swiss Federal Laboratories for Materials Testing and Research (Empa)
  • , Bart NicolaïAffiliated withMeBioS, Department of Biosystems, University of LeuvenVCBT, Flanders Centre of Postharvest Technology

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Neutron imaging is a promising technique to study drying processes in food engineering as it is a non-intrusive, non-destructive technique, which provides quasi-real-time quantitative information of the water loss during drying and of the internal water distribution, at a high spatial and dynamic resolution. Particularly, the high sensitivity to water is its main advantage for drying studies, despite the limited accessibility to reactor facilities, which produce neutrons. This technique was used to investigate forced convective drying of fruit tissue (pear and apple), placed in a small wind tunnel. Water loss, water distribution in the sample and sample shrinkage were evaluated as a function of time. The water loss, determined quantitatively from neutron radiographs, was underestimated slightly compared to gravimetrical measurements. The overall drying behaviour agreed well with control measurements performed in a climatic chamber and was very similar for both fruit tissues. The corresponding shrinkage behaviour of both tissues was also similar. The large shrinkage, which is characteristic for soft biological materials such as food products, however, hindered post-processing to some extent. From the internal water distribution, the water gradients within the sample, induced by drying, were visualised and were found to predominantly occur at the air–material interface, indicating that the water transport inside the tissue dominated the water loss, instead of the convective exchange with the air flow. Neutron imaging was shown to exhibit unique benefits for studying drying processes of food.

Keywords

Non-destructive Imaging Apple Pear Water Wind tunnel