Skip to main content
Log in

Treatments with Xylanase at High (90 %) and Low (40 %) Water Content Have Different Impacts on Physicochemical Properties of Wheat Bran

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of the work was to elucidate the impacts of treatment with xylanase at high (90 %) and low (40 %) water contents on the structural and physicochemical properties of wheat bran. The bran treatments at 40 % water content, both with and without added xylanase, resulted in a smaller average bran particle size, more changes in bran microstructure, and higher solubilization of polysaccharides than the corresponding treatments at 90 %. Also, the water holding capacity of bran (3.6 ± 0.1 g water/g bran dm), determined by Baumann method, decreased more already after 4-h xylanase treatments at 40 % (2.4 ± 0.1) than at 90 % (2.9 ± 0.2). The solubility of salt-extractable bran proteins decreased during the treatments, especially at 40 %, also without added xylanase. Protein aggregation was detected in the SDS + DTT-extractable bran fraction, which also contained small proteins of 10–20 kDa not detectable in the untreated bran. The use of xylanase had only minor effect on bran proteins as compared to the treatments without added xylanase. The results indicate the large role of mechanical shear on the bran properties at 40 % water content. The low arabinose/xylose ratio (0.32) in the bran water extract after 24-h xylanase treatment at 40 %, however, suggests that the solubilization of arabinoxylan was caused by enzymatic action, and not by mechanical degradation. Arabinose/xylose ratio of the bran water extract decreased similarly during all the treatments, suggesting similar solubilization pattern of arabinoxylan at both water contents. The study showed that bran properties can be significantly modified by adjusting the water content and mechanical energy used in processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AACC. (2003). Approved methods of the American Association of Cereal Chemists. In Approved methods of the American Association of Cereal Chemists (10th edition). St. Paul: The Association.

    Google Scholar 

  • Anderson, A. K., & Ng, P. K. W. (2000). Changes in disulfide and sulfhydryl contents and electrophoretic patterns and extruded wheat flour proteins. Cereal Chemistry, 77(3), 354–359.

    Article  CAS  Google Scholar 

  • Andersson, A. A. M., Landberg, R., Söderman, T., Hedkvist, S., Katina, K., Juvonen, R., Holopainen, U., Lehtinen, P., & Åman, P. (2011). Effects of alkylresorcinols on volume and structure of yeast-leavened bread. Journal of the Science of Food and Agriculture, 91(2), 226–232.

    Article  CAS  Google Scholar 

  • Anson, N. M., Selinheimo, E., Havenaar, R., Aura, A. M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., & Haenen, G. R. M. M. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. Journal of Agricultural and Food Chemistry, 57(14), 6148–6155.

    Article  CAS  Google Scholar 

  • Antoine, C., Peyron, S., Mabille, F., Lapierre, C., Bouchet, B., Abecassis, J., & Rouau, X. (2003). Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. Journal of Agricultural and Food Chemistry, 51(7), 2026–2033.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists. In Official methods of analysis of the Association of Official Analytical Chemists (15th edition). Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Auffret, A., Ralet, M., Guillon, F., Barry, J., & Thibault, J. (1994). Effect of grinding and experimental conditions on the measurement of hydration properties of dietary fibres. LWT-Food Science and Technology, 27(2), 166–172.

    Article  CAS  Google Scholar 

  • Bailey, M. J., & Linko, M. (1990). Production of β-galactosidase by Aspergillus oryzae in submerged bioreactor cultivation. Journal of Biotechnology, 16(1–2), 57–66.

    Article  CAS  Google Scholar 

  • Bailey, M. J., & Pessa, E. (1990). Strain and process for production of polygalacturonase. Enzyme and Microbial Technology, 12(4), 266–271.

    Article  CAS  Google Scholar 

  • Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  • Barron, C., Surget, A., & Rouau, X. (2007). Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science, 45(1), 88–96.

    Article  CAS  Google Scholar 

  • Baumann, H. (1966). Apparatur nach Baumann zur Bestimmung der Flüssigkeitsaufnahme von pulvrigen Substanzen. Fette, Seifen, Anstrichmittel, 68(9), 741–743.

    Article  CAS  Google Scholar 

  • Beaugrand, J., Crônier, D., Debeire, P., & Chabbert, B. (2004). Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. Journal of Cereal Science, 40(3), 223–230.

    Article  CAS  Google Scholar 

  • Benamrouche, S., Crônier, D., Debeire, P., & Chabbert, B. (2002). A chemical and histological study on the effect of (1→4)-β-endo-xylanase treatment on wheat bran. Journal of Cereal Science, 36(2), 253–260.

    Article  CAS  Google Scholar 

  • Blakeney, A. B., Harris, P. J., Henry, R. J., & Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 113(2), 291–299.

    Article  CAS  Google Scholar 

  • Chaplin, M. (2003). Fibre and water binding. Proceedings of the Nutrition Society, 62(1), 223–227.

    Article  CAS  Google Scholar 

  • Courtin, C. M., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science, 35(3), 225–243.

    Article  CAS  Google Scholar 

  • Dornez, E., Cuyvers, S., Holopainen, U., Nordlund, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2011). Inactive fluorescently labeled xylanase as a novel probe for microscopic analysis of arabinoxylan containing cereal cell walls. Journal of Agricultural and Food Chemistry, 59(12), 6369–6375.

    Article  CAS  Google Scholar 

  • Figueroa-Espinoza, M. C., Poulsen, C., Søe, J. B., Zargahi, M. R., & Rouau, X. (2004). Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes. Journal of Agricultural and Food Chemistry, 52(13), 4240–4249.

    Article  CAS  Google Scholar 

  • Forssell, P., Kontkanen, H., Schols, H., Hinz, S., Eijsink, V., Treimo, J., Robertson, J., Waldron, K., Faulds, C., & Buchert, J. (2009). Hydrolysis of brewers' spent grain by carbohydrate degrading enzymes. Journal of the Institute of Brewing, 114(4), 306–314.

    Article  Google Scholar 

  • Gajula, H., Alavi, S., Adhikari, K., & Herald, T. (2008). Precooked bran-enriched wheat flour using extrusion: dietary fiber profile and sensory characteristics. Journal of Food Science, 73(4), S173–S179.

    Article  CAS  Google Scholar 

  • Galleschi, L., & Felicioli, F. (1994). Purification, characterization and activation by anions of an aspartic proteinase isolated from bran of soft wheat. Plant Science, 98(1), 15–24.

    Article  CAS  Google Scholar 

  • Gan, Z., Galliard, T., Ellis, P. R., Angold, R. E., & Vaughan, J. G. (1992). Effect of the outer bran layers on the loaf volume of wheat bread. Journal of Cereal Science, 15(2), 151–163.

    Article  Google Scholar 

  • Hemery, Y. M., Anson, N. M., Havenaar, R., Haenen, G. R. M. M., Noort, M. W. J., & Rouau, X. (2010). Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Research International, 43(5), 1429–1438.

    Article  CAS  Google Scholar 

  • AOAC International. (2003). Official methods of analysis of AOAC International. In Official methods of analysis of AOAC International (17th edition). Gaithersburg: Association of Analytical Communities.

    Google Scholar 

  • IUPAC. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  Google Scholar 

  • Izydorczyk, M. S. (2009). Arabinoxylans. In G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd edition) (pp. 653–692). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Kamal-Eldin, A., Lærke, H. N., Knudsen, K. B., Lampi, A. M., Piironen, V., Adlercreutz, H., Katina, K., Poutanen, K., & Åman, P. (2009). Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food and Nutrition Research, 53(1), 1–11.

    Google Scholar 

  • Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P., & Autio, K. (2006). Effects of sourdough and enzymes on staling of high-fibre wheat bread. Food Science and Technology, 39(5), 479–491.

    CAS  Google Scholar 

  • Kazmin, D., Edwards, R. A., Turner, R. J., Larson, E., & Starkey, J. (2002). Visualization of proteins in acrylamide gels using ultraviolet illumination. Analytical Biochemistry, 301(1), 91–96.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  • Lai, C., Hoseney, R., & Davis, A. (1989). Effects of wheat bran in breadmaking. Cereal Chemistry, 66(3), 217–219.

    Google Scholar 

  • Loponen, J., Laine, P., Sontag-Strohm, T., & Salovaara, H. (2007). Behaviour of oat globulins in lactic acid fermentation of oat bran. European Food Research and Technology, 225(1), 105–110.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  • Mahasukhonthachat, K., Sopade, P. A., & Gidley, M. J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, 96(1), 18–28.

    Article  Google Scholar 

  • Mccleary, B. V., Solah, V., & Gibson, T. S. (1994). Quantitative measurement of total starch in cereal flours and products. Journal of Cereal Science, 20(1), 51–58.

    Article  CAS  Google Scholar 

  • Noort, M. W. J., van Haaster, D., Hemery, Y., Schols, H. A., & Hamer, R. J. (2010). The effect of particle size of wheat bran fractions on bread quality—evidence for fibre–protein interactions. Journal of Cereal Science, 52(1), 59–64.

    Article  CAS  Google Scholar 

  • Poutanen, K., & Puls, J. (1988). Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Applied Microbiology and Biotechnology, 28(4), 425–432.

    Article  CAS  Google Scholar 

  • Poutanen, K., Rättö, M., Puls, J., & Viikari, L. (1987). Evaluation of different microbial xylanolytic systems. Journal of Biotechnology, 6(1), 49–60.

    Article  CAS  Google Scholar 

  • Rasper, V. F., & DeMan, J. M. (1980). Measurement of hydration capacity of wheat flour/starch mixtures. Cereal Chemistry, 57, 27–31.

    Google Scholar 

  • Santala, O., Lehtinen, P., Nordlund, E., Suortti, T., & Poutanen, K. (2011). Impact of water content on the solubilisation of arabinoxylan during xylanase treatment of wheat bran. Journal of Cereal Science, 54(2), 187–194.

    Article  CAS  Google Scholar 

  • Sollars, F. W. (1973). Fractionation and reconstitution techniques for studying water-retention properties of wheat flours. Cereal Chemistry, 50, 708–716.

    Google Scholar 

  • Stålbrand, H., Siika-aho, M., Tenkanen, M., & Viikari, L. (1993). Purification and characterization of two β-mannanases from Trichoderma reesei. Journal of Biotechnology, 29(3), 229–242.

    Article  Google Scholar 

  • Swennen, K., Courtin, C. M., Lindemans, G. C. J. E., & Delcour, J. A. (2006). Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. Journal of the Science of Food and Agriculture, 86(11), 1722–1731.

    Article  CAS  Google Scholar 

  • Thebaudin, J., Lefebvre, A., Harrington, M., & Bourgeois, C. (1997). Dietary fibres: nutritional and technological interest. Trends in Food Science & Technology, 8(2), 41–48.

    Article  CAS  Google Scholar 

  • Umetsu, H., Abe, M., Sugawara, Y., Nakai, T., Watanabe, S., & Ichishima, E. (1981). Purification, crystallisation and characterisation of carboxypeptidase from wheat bran. Food Chemistry, 7(2), 125–138.

    Article  CAS  Google Scholar 

  • Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry, 57(18), 8467–8473.

    Article  Google Scholar 

  • Van Craeyveld, V., Dornez, E., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2010). Wheat bran AX properties and choice of xylanase affect enzymic production of wheat bran-derived arabinoxylan-oligosaccharides. Cereal Chemistry, 87(4), 283–291.

    Article  Google Scholar 

  • Virkki, L., Maina, H. N., Johansson, L., & Tenkanen, M. (2008). New enzyme-based method for analysis of water-soluble wheat arabinoxylans. Carbohydrate Research, 343(3), 521–529.

    Article  CAS  Google Scholar 

  • Zhu, K., Huang, S., Peng, W., Qian, H., & Zhou, H. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Research International, 43(4), 943–948.

    Article  CAS  Google Scholar 

  • Zurbriggen, B., Bailey, M. J., Penttilä, M. E., Poutanen, K., & Linko, M. (1990). Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae. Journal of Biotechnology, 13(4), 267–278.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kaarina Viljanen for the GC analyses and Ulla Holopainen for the help with interpreting the microscopy results. Ninon Piacere is thanked for help with bran treatments. Technical assistance of Ritva Heinonen in microscopy and Eeva Manninen in GC analyses is acknowledged.

Funding

The work was financially supported by Raisio plc’s Research Foundation (grant to Outi Santala) and by the Academy of Finland (Kaisa Poutanen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Outi K. Santala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santala, O.K., Nordlund, E.A. & Poutanen, K.S. Treatments with Xylanase at High (90 %) and Low (40 %) Water Content Have Different Impacts on Physicochemical Properties of Wheat Bran. Food Bioprocess Technol 6, 3102–3112 (2013). https://doi.org/10.1007/s11947-012-0967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0967-6

Keywords

Navigation