Skip to main content
Log in

The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In light of the increasing interest in the development of functional food, several researches have focused on the production of food grade emulsifiers of nutritional interest, especially enriched in the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA). The aim of this paper is to make a review of the production of monoacylglycerols (MAG) and diacylglycerols (DAG) obtained from different feedstock, mainly fish oil. A section of this paper is dedicated to the raw materials used as feedstock for these emulsifiers production. The health benefits of these partial acylglycerols are outlined. The chemical and enzymatic methods for producing these esters of glycerol are discussed, focusing on glycerolysis reactions. Recent advances on the lipase-catalyzed production of these partial acylglycerols in alternative reaction media and systems are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamczak, M., Bornscheuer, U. T., & Bednarski, W. (2009). The application of biotechnological methods for the synthesis of biodiesel. European Journal of Lipid Science and Technology, 111, 808–813.

    Article  CAS  Google Scholar 

  • Adhikari, S., Fernando, S., & Haryanto, A. (2007). Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catalysis Today, 129, 355–364.

    Article  CAS  Google Scholar 

  • Adlercreutz, P. (1996). Modes of using enzymes in organic media. In A. M. P. Koskinen & A. M. Klibanov (Eds.), Enzymatic Reactions in Organic Media (pp. 9–42). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Arcos, J. A., Otero, C., & Hill, C. G., Jr. (1998). Rapid enzymatic production of acylglycerols from conjugated linoleic acid and glycerol in a solvent-free system. Biotechnology Letters, 20(6), 617–621.

    Article  CAS  Google Scholar 

  • Aro, T., Tahvonen, R., Mattila, T., Nurmi, J., Sivonen, T., & Kallio, H. (2000). Effects of season and processing on oil content and fatty acids of baltic herring (Clupea harengus membras). Journal of Agricultural and Food Chemistry, 48(12), 6085–6093.

    Article  CAS  Google Scholar 

  • Babicz, I., Leite, S. G. F., Souza, R. O. M. A., & Antunes, O. A. C. (2010). Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics Sonochemistry, 17(1), 4–6.

    Article  CAS  Google Scholar 

  • Bailey, A. E. (1961). Aceites y Grasas Industriales. Zaragoza: Editorial Reverté.

    Google Scholar 

  • Barouh, N., Piombo, G., Goli, T., Baréa, B., Pina, M., Lago, R., & Villeneuve, P. (2008). Enzymatic production of conjugated linoleic acid monoacylglycerols from dehydrated isomerized castor bean oil. Journal of Food Lipids, 15, 13–27.

    Article  CAS  Google Scholar 

  • Bendikienë, V., Surinènaité, B., Bachmatova, I., Marcinkeviciené, L., & Juodka, B. (2005). The specificity of Pseudomonas mendocina 3121-1 lipase. Hydrolysis Biologija, 1, 27–30.

    Google Scholar 

  • Bendikienë, V., Surinènaité, B., Bachmatova, I., Marcinkeviciené, L., & Juodka, B. (2008). Tweens and ionic detergents in the hydrolytic activity of Pseudomonas mendocina 3121-1 lipase. Biologija, 54(4), 242–246.

    Article  CAS  Google Scholar 

  • BNF (2000). Conference reports: n-3 fatty acids and health. British Nutrition Foundation, United Kingdom. Available at: www.nutrition.org.uk. Accessed 13 January 2006.

  • Bockisch, M. (1993). Composition, structure, physical data, and chemical reactions of fats and oils, their derivatives, and their associates. In Fats and Oils Handbook (pp. 53–120). Champaign: AOCS Press.

    Google Scholar 

  • Borg, P., Girardin, M., Rovel, B., & Barth, D. (2000). Comparison between two processes for the enzymatic synthesis of tri-docosahexaenoylglycerol in a solvent-free medium. Biotechnology Letters, 22, 777–781.

    Article  CAS  Google Scholar 

  • Bornscheuer, U. T. (1995). Lipase-catalyzed syntheses of monoacylglycerols. Enzyme and Microbial Technology, 17, 578–586.

    Article  CAS  Google Scholar 

  • Bournay, L., Casanave, D., Delfort, B., Hillion, G., & Chodorge, J. A. (2005). New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today, 106(1–4), 190–192.

    Article  CAS  Google Scholar 

  • Brasil (2005). Resolução RDC n. 270 de 22 de setembro de 2005. Agência Nacional de Vigilância Sanitária, Brasília, Brazil. Available at: www.anvisa.gov.br. Accessed 11 December 2005 (in Portuguese).

  • Castro, H. F., Mendes, A. A., Santos, J. C., & Aguiar, C. L. (2004). Modificação de óleos e gorduras por biotransformação. Química Nova, 27(1), 146–156 (in Portuguese).

    Article  Google Scholar 

  • Cheetham, P. S. J. (1995). Principles of industrial biocatalysis and bioprocessing. In A. Wiseman (Ed.), Handbook of Enzyme Biotechnology (pp. 83–234). Cornwall: Ellis Horwood Limited.

    Google Scholar 

  • Cho, K., Hong, J., & Lee, K. (2010). Monoacylglycerol (MAG)-oleic acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG-palmitic acid. Journal of Medicinal Food, 13(1), 99–107.

    Article  CAS  Google Scholar 

  • Chojnacka, A., Gladkowski, W., Kielbowicz, G., & Wawrzenczyk, C. (2009). Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnology Letters, 31, 705–709.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Review, 107, 2411–2502.

    Article  CAS  Google Scholar 

  • Damstrup, M. L., Jensen, T., Sparso, F. V., Kiil, S. Z., Jensen, A. D., & Xu, X. (2005). Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. Journal of the American Oil Chemists’ Society, 82(8), 559–564.

    Article  CAS  Google Scholar 

  • Damstrup, M. L., Jensen, T., Sparso, F. V., Kiil, S. Z., Jensen, A. D., & Xu, X. (2006). Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: process optimization by response surface methodology. Journal of the American Oil Chemists’ Society, 83(1), 27–33.

    Article  CAS  Google Scholar 

  • Dasari, M. A., Kiatsimkul, P. P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General, 281, 225–231.

    Article  CAS  Google Scholar 

  • Devi, P., Zhang, H., Damstrup, M. L., Guo, Z., Zhang, L., Lue, B. M., & Xu, X. (2008). Enzymatic synthesis of designer lipids. OCL, 15(3), 189–195.

    CAS  Google Scholar 

  • Dunford, N. T. (2004). Oil- and oilseed-based bioactive compounds and their health effects. In N. T. Dunford & H. B. Dunford (Eds.), Nutritionally enhanced edible oil and oilseed processing. Champaign: AOCS Press.

    Chapter  Google Scholar 

  • Eom, T.-K., Kong, C.-S., Byun, H.-G., Jung, W.-K., & Kim, S.-K. (2010). Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochemistry, 45(5), 738–743.

    Article  CAS  Google Scholar 

  • Esmelindro, Â. F. A., Fiametti, K. G., Ceni, G., Corazza, M. L., Treichel, H., Oliveira, D., & Oliveira, J. V. (2008). Lipase-catalyzed production of monoglycerides in compressed propane and AOT surfactant. Journal of Supercritical Fluids, 47(1), 64–69.

    Article  CAS  Google Scholar 

  • Ethier, S., Woisard, K., Vaughan, D., & Wen, Z. (2011). Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology, 102(1), 88–93.

    Article  CAS  Google Scholar 

  • FDA (2008). 21 CFR 184.1505 - Mono- and diglycerides. Code of Federal Regulations, USDA, Washington DC, USA.

  • FDA (2010a). 21 CFR 172.838—Polysorbate 65. Code of Federal Regulations, USDA, Washington DC, USA.

  • FDA (2010b). 21 CFR 182.1320 - Glycerin. Code of Federal Regulations, USDA, Washington DC, USA.

  • Feltes MMC (2006). Síntese química e enzimática de triglicerídios estruturados a partir de óleo de peixe. Master Thesis. Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil (in Portuguese).

  • Feltes, M. M. C., Pitol, L. O., Correia, J. F. G., Beirão, L. H., Block, J. M., Ninow, J. L., & Spiller, V. R. (2009). Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic interesterification. Grasas y Aceites, 60(2), 168–176.

    Article  CAS  Google Scholar 

  • Feltes, M. M. C., Oliveira, J. V., Treichel, H., Block, J. M., Oliveira, D., & Ninow, J. L. (2010). Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. European Food Research and Technology, 231, 701–710.

    Article  CAS  Google Scholar 

  • Feltes, M. M. C., Villeneuve, P., Baréa, B., Barouh, N., Oliveira, J. V., Oliveira, D., & Ninow, J. L. (2012). Enzymatic production of monoacylglycerols (MAG) and diacylglycerols (DAG) from fish oil in a solvent-free system. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-011-1998-2.

  • Fernando, S., Adhikari, S., Kota, K., & Bandi, R. (2007). Glycerol based automotive fuels from future biorefineries. Fuel, 86(17–18), 2806–2809.

    Article  CAS  Google Scholar 

  • Ferreira-Dias, S., Correia, A. C., Baptista, F. O., & Fonseca, M. M. R. (2001). Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. Journal of Molecular Catalysis B: Enzymatic, 11, 699–711.

    Article  CAS  Google Scholar 

  • Fiametti, K. G., Rovani, S., Oliveira, D., Corazza, M. L., Treichel, H., & Oliveira, J. V. (2009). Kinetics of solvent-free lipase catalyzed production of monoacylglycerols from olive oil in Aerosol-OT surfactant. Industrial and Engineering Chemistry Research, 48(2), 708–712.

    Article  CAS  Google Scholar 

  • Fiametti, K. G., Sychoski, M. M., Cesaro, A., Furigo, A., Jr., Bretanha, L. C., Pereira, C. M. P., Treichel, H., Oliveira, D., & Oliveira, J. V. (2011). Ultrasound irradiation promoted efficient solvent-free lipase-catalyzed production of mono- and diacylglycerols from olive oil. Ultrasonics Sonochemistry, 18, 981–987.

    Article  CAS  Google Scholar 

  • Foglia, T. A., & Villeneuve, P. (1997). Carica papaya latex-catalyzed synthesis of structured triacylglycerols. Journal of the American Oil Chemists' Society, 74(11), 1447–1450.

    Article  CAS  Google Scholar 

  • Fregolente, P., Pinto, G., Wolf-Maciel, M., & Filho, R. (2010). Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Applied Biochemistry and Biotechnology, 160(7), 1879–1887.

    Article  CAS  Google Scholar 

  • Freitas, L., Bueno, T., Perez, V. H., & Castro, H. F. (2008). Monoglicerídios: produção por via enzimática e algumas aplicações. Química Nova, 31(6), 1514–1521 (in Portuguese).

    Article  CAS  Google Scholar 

  • Freitas, L., Da Rós, P. C. M., Santos, J. C., & Castro, H. F. (2009). An integrated approach to produce biodiesel and monoglycerides by enzymatic interestification of babassu oil (Orbinya sp.). Process Biochemistry, 44, 1068–1074.

    Article  CAS  Google Scholar 

  • Freitas, L., Paula, A. V., Santos, J. C., Zanin, G. Z., & Castro, H. F. (2010). Enzymatic synthesis of monoglycerides by esterification reaction using Penicillium camembertii lipase immobilized on epoxy SiO2-PVA composite. Journal of Molecular Catalysis B: Enzymatic, 65(1–4), 87–90.

    Article  CAS  Google Scholar 

  • Gais HJ & Theil F (2002). Hydrolysis and formation of carboxylic acid esters. In: Enzyme catalysis in organic synthesis. K. Drauz and H. Waldmann. Weinheim, Wiley-VCH. 2: 335–578.

  • Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097–1107.

    Article  CAS  Google Scholar 

  • van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel production technology. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  • Goldberg, I. (Ed.). (1994). Functional foods: designer foods, pharmafoods, nutraceuticals. New York: Chapman & Hall.

    Google Scholar 

  • González-Pajuelo, M., Meynial-Salles, I., Mendes, F., Andrade, J. C., Vasconcelos, I., & Soucaille, P. (2005). Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering, 7(5–6), 329–336.

    Article  CAS  Google Scholar 

  • Gordon, D. T., & Ratliff, V. (1992). The implications of omega 3 fatty acids in human health. In G. J. Flick & R. E. Martin (Eds.), Advances in seafoods biochemistry: composition and quality (pp. 69–91). Lancaster: Technomic Publishing Company.

    Google Scholar 

  • Griebeler, N., Polloni, A. E., Remonatto, D., Arbter, F., Vardanega, R., Cechet, J., Di Luccio, M., Oliveira, D., Treichel, H., Cansian, R. L., Rigo, E., & Ninow, J. L. (2011). Isolation and screening of lipase-producing fungi with hydrolytic activity. Food and Bioprocess Technology, 4, 578–586.

    Article  CAS  Google Scholar 

  • Grompone MA (2012). Mono- y di-glicéridos (in press). In: Block & Barrera-Arellano (ed). Temas Selectos en Aceites y Grasas. Editora Blücher, São Paulo, Brazil.

  • Gulati, R., Arya, P., Malhotra, B., Prasad, A. K., Saxena, R. K., Kumar, J., Watterson, A. C., & Parmar, V. S. (2003). Novel biocatalytic esterification reactions on fatty acids: synthesis of sorbitol 1(6) - monostearate. Arkivoc, iii, 159–170.

    Google Scholar 

  • Gunstone, F. D. (1999). Enzymes as biocatalysts in the modification of natural lipids. Review. Journal of the Science of Food and Agriculture, 79, 1535–1549.

    Article  CAS  Google Scholar 

  • Gunstone, F. D., & Herslöf, B. G. (2000). Lipid Glossary 2. Bridgewater, United Kingdom: The Oily Press.

    Google Scholar 

  • Gunstone, F. D., Harwood, J. L., & Padley, F. B. (1994). Marine oils: fish and whale oils. In F. D. Gunstone (Ed.), The Lipid Handbook (pp. 167–171). London, United Kingdom: Chapman & Hall.

    Google Scholar 

  • Guo, Z., & Sun, Y. (2004). Solvent-free enzymatic synthesis of 1,3-diconjugated linoleoyl glycerol optimized by response surface methodology. Biotechnology Progress, 20, 619–622.

    Article  CAS  Google Scholar 

  • Guo, Z., & Sun, Y. (2007). Solvent-free production of 1,3-diglyceride of CLA: strategy consideration and protocol design. Food Chemistry, 100, 1076–1084.

    Article  CAS  Google Scholar 

  • Gurr, M. I. (1999, 2009). Lipids in nutrition and health: a reappraisal. Bridgwater, United Kingdom: The Oily Press.

  • Gutiérrez-Ayesta, C., Carelli, A. A., & Ferreira, M. L. (2007). Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme and Microbial Technology, 41, 35–43.

    Article  CAS  Google Scholar 

  • Hájek, M., & Skopal, F. (2010). Treatment of glycerol phase formed by biodiesel production. Bioresource Technology, 101(9), 3242–3245.

    Article  CAS  Google Scholar 

  • Hanh, H. D., Dong, N. T., Okitsu, K., Nishimura, R., & Maeda, Y. (2009). Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition. Renewable Energy, 34(780), 780–783.

    Article  CAS  Google Scholar 

  • Harris, W. S., Mozaffarian, D., Lefevre, M., Toner, C. D., Colombo, J., Cunnane, S. C., Holden, J. M., Klurfeld, D. M., Morris, M. C., & Whelan, J. (2009). Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. The Journal of Nutrition, 139, 804S–819S.

    Article  CAS  Google Scholar 

  • Hartvigsen, M. S., Mu, H., & Hoy, C.-E. (2003). Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring—a preliminary study. Nutrition Research, 23, 747–760.

    Article  CAS  Google Scholar 

  • Hasenhuettl, G. L. (2008). Synthesis and commercial preparation of food emulsifiers. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (pp. 1–38). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Husson, E., Humeau, C., Blanchard, F., Framboisier, X., Marc, I., & Chevalot, I. (2008). Chemo-selectivity of the N, O-enzymatic acylation in organic media and in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 55, 110–117.

    Article  CAS  Google Scholar 

  • Irimescu, R., Iwasaki, Y., & Hou, C. T. (2002). Study of TAG ethanolysis to 2-MAG by immobilized Candida antarctica lipase and synthesis of symmetrically structured TAG. Journal of the American Oil Chemists’ Society, 79(9), 879–883.

    Article  CAS  Google Scholar 

  • ISEO. (2006). Food fats and oils. New York: Institute of Shortening and Edible Oils.

    Google Scholar 

  • Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100(3), 260–265.

    Article  CAS  Google Scholar 

  • Jaeger, K.-E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16(9), 396–403.

    Article  CAS  Google Scholar 

  • Jeromin L, Wozny G & Li P (2000). Process for the production of monoglyceride based on the glycerolysis of methyl ester. U. S. Patent No 6127561.

  • Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–347.

    Article  CAS  Google Scholar 

  • Kandasamy, R., John Kennedy, L., Vidya, C., Boopathy, R., & Sekaran, G. (2010). Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. Journal of Molecular Catalysis B: Enzymatic, 62(1), 58–65.

    Article  CAS  Google Scholar 

  • Kao (2010). Diacylglycerol application technology based on long-established fat and oil research. Available at: http://www.kao.com. Accessed 30 October 2010.

  • Kennedy, J. F. (1995). Principles of immobilization of enzymes. In A. Wiseman (Ed.), Handbook of Enzyme Biotechnology (pp. 235–310). London: Ellis Horwood.

    Google Scholar 

  • Khare, S. K., & Nakajima, M. (2000). Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chemistry, 68, 153–157.

    Article  CAS  Google Scholar 

  • Koblitz, M. G. B. (2003). Purificação e caracterização de lipase de Rhizopus sp. e sua aplicação na síntese de monoacilgliceróis. Master Thesis. Department of Food Science, State University of Campinas, Campinas, Brazil (in Portuguese).

  • Kodali, D. R., & List, G. R. (Eds.). (2005). Trans fats alternatives. Champaign: AOCS Press.

    Google Scholar 

  • Koller, M., Bona, R., Braunegg, G., Hermann, C., Horvat, P., Kroutil, M., Martinz, J., Neto, J., Pereira, L., & Varila, P. (2005). Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules, 6, 561–565.

    Article  CAS  Google Scholar 

  • Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106, 2747–2757.

    Article  Google Scholar 

  • Krog, N. (1997). Food emulsifiers. In F. D. Gunstone & F. B. Padley (Eds.), Lipid Technologies and Applications (pp. 521–534). New York: Marcel Dekker.

    Google Scholar 

  • Krüger, R. L., Valério, A., Balen, M., Ninow, J. L., Oliveira, J. V., Oliveira, D., & Corazza, M. L. (2010). Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. European Journal of Lipid Science and Technology, 112(8), 921–927.

    Article  CAS  Google Scholar 

  • Kulas, E., Olsen, E., & Ackman, R. G. (2003). Oxidation of fish lipids and its inhibition with tocopherols. In A. Kamal-Eldin (Ed.), Lipid oxidation pathways (pp. 37–69). Champaign: AOCS Press.

    Google Scholar 

  • Lands, W. E. M. (2005). Fish, omega-3 and human health. Champaign: AOCS Press.

    Book  Google Scholar 

  • Leon-Calderon, F., Schmitt, V., & Bibette, J. (2007). Emulsion science: basic principles. New York: Springer.

    Google Scholar 

  • Linder, M., Kochanowski, N., Fanny, J., & Parmentier, M. (2005). Response surface optimization of lipase-catalyzed esterification of glycerol and n-3 polyunsaturated fatty acids from salmon oil. Process Biochemistry, 40, 273–279.

    Article  CAS  Google Scholar 

  • Liu, Y., Jin, Q., Shan, L., Lin, Y., Shen, W., & Wang, X. (2008). The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrasonics Sonochemistry, 15, 402–407.

    Article  CAS  Google Scholar 

  • Lo, S.-K., Tan, C.-P., Long, K., Yussof, M. S. A., & Lai, O.-M. (2008). Diacylglycerol oil—properties, processes and products: a review. Food Bioprocess Technology, 1, 223–233.

    Article  Google Scholar 

  • Majer, S., Mueller-Langer, F., Zeller, V., & Kaltschmitt, M. (2009). Implications of biodiesel production and utilisation on global climate—a literature review. European Journal of Lipid Science and Technology, 111, 747–762.

    Article  CAS  Google Scholar 

  • Maki, K., Davidson, M., Tsushima, R., Matsuo, M., Tokimitsu, I., Umporowicz, D., Dicklin, M., Foster, G., Ingram, K., Anderson, B., Frost, S., & Bell, M. (2002). Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. American Journal of Clinical Nutrition, 76(6), 1230–1236.

    CAS  Google Scholar 

  • Maniasso, N. (2001). Ambientes micelares em química analítica. Química Nova, 24(1), 87–93 (in Portuguese).

    Article  CAS  Google Scholar 

  • Matsuo, N. (2004). Nutritional characteristics and health benefits of diacylglycerol in foods. Food Science and Technology Research, 10(2), 103–110.

    Article  CAS  Google Scholar 

  • Matsuo, N., & Tokimitsu, I. (2001). Metabolic characteristics of diacylglycerol. Inform, 12, 1098–1102.

    Google Scholar 

  • Mazur AW, Hiler GD & El-Nokaly M (1992). Process for preparing 2-acylglycerols or 1,2-diacyl diglycerides or 2,3- diacyl diglycerides. US Patent No 5116745.

  • McClements, D. J. (2008). Lipid-based emulsions and emulsifiers. In C. C. Akoh & D. B. Min (Eds.), Food lipids: chemistry, nutrition, and biotechnology (pp. 63–98). Boca Ratón: CRC Press.

    Google Scholar 

  • McNeill, G. P., Yamane, T., & Shimizu, S. (1991). A method of producing monoglyceride. European Patent Application No EP 0445692 A3.

  • Meng, X., Zou, D., Shi, Z., Duan, Z., & Mao, Z. (2004). Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids, 39(1), 37–41.

    Article  CAS  Google Scholar 

  • Micovi, M., Lutisan, J., & Cvengros, J. (1997). Balance equations for molecular distillation. Separation Science and Technology, 32, 3051–3066.

    Article  Google Scholar 

  • Monteiro, J. B., Nascimento, M. G., & Ninow, J. L. (2003). Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnology Letters, 25, 641–644.

    Article  CAS  Google Scholar 

  • Moquin, P. H. L., & Temelli, F. (2008). Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: a kinetic approach. Journal of Supercritical Fluids, 44, 40–47.

    Article  CAS  Google Scholar 

  • Morita, O., Knapp, J. F., Tamaki, Y., Varsho, B. J., Stump, D. G., & Nemec, M. D. (2008). Effects of dietary diacylglycerol oil on embryo/fetal development in rats. Food and Chemical Technology, 46, 2510–2516.

    Article  CAS  Google Scholar 

  • Mota, C. J. A., Silva, C. X. A., & Gonçalves, V. L. C. (2009). Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Química Nova, 32(3), 639–648 (in Portuguese).

    Article  CAS  Google Scholar 

  • Mu, H., & Hoy, C.-E. (2000). Effects of different medium-chain fatty acids on intestinal absorption of structured triacylglycerols. Lipids, 35(1), 83–89.

    Article  CAS  Google Scholar 

  • Nielsen, N. S., Göttsche, J. R., Holm, J., Xu, X., Mu, H., & Jacobsen, C. (2005). Effect of structured lipids based on fish oil on the growth and fatty acid composition in rainbow trout (Oncorhynchus mykiss). Aquaculture, 250(1–2), 411–423.

    Article  CAS  Google Scholar 

  • Ooi, T. L., Yong, K. C., Hazimah, A. H., Dzulkefly, K., & Wan-Yunus, W. M. Z. (2004). Glycerol residue—a rich source of glycerol and medium chain fatty acids. Journal of Oil Science, 53, 29–33.

    Article  CAS  Google Scholar 

  • Oppe, E. E. G., Salvagnini, W. M., & Taqueda, M. E. S. (2007). Redução da demanda energética na desidratação da glicerina obtida a partir de biodiesel. In: Proceedings of the 8º Congresso Iberoamericano de Engenharia Mecânica, 23–25 October 2007, Cuzco, Peru. Available at: http://congresopucp.pe/cibim8. Accessed 10 September 2010

  • Osborn, H. T., & Akoh, C. C. (2002). Structured lipids—novel fats with medical, nutraceutical, and food applications. Comprehensive reviews in food science and food safety, 1, 93–103.

    Article  CAS  Google Scholar 

  • Papanikolau, S., & Aggelis, G. (2003). Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 78, 542–547.

    Article  CAS  Google Scholar 

  • Pawongrat, R., Xu, X., & H-Kittikun, A. (2007). Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chemistry, 104, 251–258.

    Article  CAS  Google Scholar 

  • Pawongrat, R., Xu, X., & H-Kittikun, A. (2008). Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. Journal of the Science of Food and Agriculture, 88, 256–262.

    Article  CAS  Google Scholar 

  • Pella, D., Dubnov, G., Singh, R. B., Sharma, R., Berry, E. M., & Manor, O. (2003). Effects of an Indo-Mediterranean diet on the omega-6/omega-3 ratio in patients at high risk of coronary artery disease. The Indian Paradox. World Review of Nutrition and Dietetics, 92, 74–80.

    Google Scholar 

  • Pfeffer, J., Freund, A., Bel-Rhlid, R., Hansen, C.-E., Reuss, M., Schmid, R. D., & Maurer, S. C. (2007). Highly efficient enzymatic synthesis of 2-monoacylglycerides and structured lipids and their production on a technical scale. Lipids, 42, 947–953.

    Article  CAS  Google Scholar 

  • Pigott, G. M., & Tucker, B. W. (1990). Seafood: effects of technology on nutrition. New York: Marcel Dekker.

    Google Scholar 

  • Platt, D., Pelled, D., & Shulman, A. (2006). Oils enriched with diacylglycerols and phytosterol esters for use in the reduction of blood cholesterol and triglycerides and oxidative stress. US Patent Application No 2006/0052351 A1.

  • PubChem (2010). Glycerol. Public Chemical Database, National Center for Biotechnology Information, Rockville Pike, USA. Available at: http://pubchem.ncbi.nlm.nih.gov. Accessed 15 December 2010.

  • Ramani, K., John Kennedy, L., Ramakrishnan, M., & Sekaran, G. (2010). Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochemistry, 45(10), 1683–1691.

    Article  CAS  Google Scholar 

  • Reddy, J. R. C., Vijeeta, T., Karuna, M. S. L., Rao, B. V. S., & Prasad, R. B. N. (2005). Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. Journal of the American Oil Chemists’ Society, 82(10), 727–730.

    Article  CAS  Google Scholar 

  • Rousseau, D., & Marangoni, A. G. (2002). The effects of interesterification on the physical properties of fats. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (pp. 479–527). New York: Marcel Dekker.

    Google Scholar 

  • Salum, T. F. C., Baron, A. M., Zago, E., Turra, V., Baratti, D. A., Mitchell, D., & Krieger, N. (2008). An efficient system for catalyzing ester synthesis using a lipase from a newly isolated Burkholderia cepacia strain. Biocatalysis and Biotransformation, 26(3), 197–203.

    Article  CAS  Google Scholar 

  • Sartorelli, D. S., Damião, R., Chaim, R., Hirai, A., Gimeno, S. G., & Ferreira, S. R. (2010). Dietary [omega]-3 fatty acid and [omega]-3: [omega]-6 fatty acid ratio predict improvement in glucose disturbances in Japanese Brazilians. Nutrition, 26(2), 184–191.

    Article  CAS  Google Scholar 

  • Schroder R & Oba K (1992). Method for continuous preparation of highly pure monoglyceride. U. S. Patent Application No 005153126A.

  • Shimada, Y. (2006). Enzymatic modification of lipids for functional foods and nutraceuticals. In C. C. Akoh (Ed.), Handbook of functional lipids—functional foods and nutraceuticals (pp. 437–456). Boca Ratón: CRC Press.

    Google Scholar 

  • Simopoulos, A. P. (2004). Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Reviews International, 20(1), 77–90.

    Article  CAS  Google Scholar 

  • Soccol, M. C. H., & Oetterer, M. (2003). Seafood as functional food. Brazilian Archives of Biology and Technology, 46(3), 443–454.

    Article  Google Scholar 

  • Soe JB (2008). Solid phase glycerolysis. U. S. Patent No 2008/0233235 A1.

  • Stansby, E. M. (1990). Fish oils in nutrition. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Sugiura M, Yamaguchi H & Yamada N (2001). Process for producing partial glyceride. European Patent No 1094116 A1.

  • Sugiura M, Yamaguchi H & Yamada N (2002). Preparation process of diglycerides. US Patent No 6361980.

  • Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., & Itakura, H. (2001). Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol. Lipids, 36, 379–382.

    Article  CAS  Google Scholar 

  • Takase, H. (2007). Metabolism of diacylglycerol in humans. Asia Pacific Journal of Clinical Nutrition, 16(1), 398–403.

    CAS  Google Scholar 

  • Takeno N, Shimotoyodome A & Meguro S (2009). Inhibitor of increase in postprandial blood insulin. US Patent No 2009/0124691 A1.

  • Tangkam, K., Weber, N., & Wiege, B. (2008). Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining. Grasas y Aceites, 59(3), 245–253.

    CAS  Google Scholar 

  • Thengumpillil NBK, Penumarthy V & Ayyagari AL (2002). Process for the preparation of a monoglyceride. US Patent No 6500974 B2.

  • Torres, C., Lin, B., & Hill, C. G., Jr. (2002). Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnology Letters, 24, 667–673.

    Article  CAS  Google Scholar 

  • Turon F (2002). Amélioration de la qualité nutritionnelle d’une huile de thon: Biofaçonnement par une enzyme végétale naturellement supportée. Doctorate Thesis. Science des Agroressources, Institut National Polytechnique de Toulouse, Toulouse, France (in French).

  • USDA. (2010). Fatty acids and cholesterol. Report of the dietary guidelines Advisory Committee on the Dietary Guidelines for Americans. Washington: U.S. Department of Health and Human Services, USDA.

    Google Scholar 

  • USP. (2009). Glycerin. Revision Bulletin. Rockville: The United States Pharmacopeial Convention.

    Google Scholar 

  • Valério, A., Krüger, R. L., Ninow, J. L., Corazza, F. C., Oliveira, D., Oliveira, J. V., & Corazza, M. L. (2009). Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. Journal of Agricultural and Food Chemistry, 57, 8350–8356.

    Article  CAS  Google Scholar 

  • Valério, A., Fiametti, K. G., Rovani, S., Treichel, H., Oliveira, D., & Oliveira, J. V. (2010). Low-pressure lipase-catalyzed production of mono and diglycerides with and without n-butane and AOT surfactant. Applied Biochemistry and Biotechnology, 160, 1789–1796.

    Article  CAS  Google Scholar 

  • Valério, A., Rovani, S., Treichel, H., Oliveira, D., & Oliveira, J. V. (2010). Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess and Biosystem Engineering, 33(7), 805–812.

    Article  CAS  Google Scholar 

  • Verger, R. (1997). Interfacial activation of lipases: facts and artifacts. Trends in Biotechnology, 15(1), 32–38.

    Article  CAS  Google Scholar 

  • Villeneuve, P. (2007). Lipases in lipophilization reactions. Biotechnology Advances, 25, 515–536.

    Article  CAS  Google Scholar 

  • Villeneuve, P., Muderhwa, J. M., Graille, J., & Hoss, M. J. (2000). Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic, 9, 113–148.

    Article  CAS  Google Scholar 

  • Visentainer, J. V., Carvalho, P. O., Ikegaki, M., & Park, Y. (2000). Concentração de ácido eicosapentaenóico (EPA) e ácido docosahexaenóico (DHA) em peixes marinhos da costa brasileira. Ciência e Tecnologia de Alimentos, 20(1), 90–93 (in Portuguese).

    Article  CAS  Google Scholar 

  • Wanasundara, U. N., & Shahidi, F. (1997). Biotechnological methods for concentrating omega-3 fatty acids from marine oils. In Shahidi, Jones, & Kitts (Eds.), Seafood safety, processing, and biotechnology (pp. 225–233). Lancaster: Technomic.

    Google Scholar 

  • Wanasundara, U. N., & Shahidi, F. (1998). Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chemistry, 63(3), 335–342.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, M., Song, K., Wang, L., Han, X., Tang, S., & Wang, Y. (2010). Separation of diacylglycerols from enzymatically hydrolyzed soybean oil by molecular distillation. Separation and Purification Technology, 75(2), 114–120.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, M., Song, K., Wang, L., Tang, S., & Riley, W. W. (2010). Partial hydrolysis of soybean oil by phospholipase A1 (Lecitase Ultra). Food Chemistry, 121(4), 1066–1072.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Yamauchi-Sato, Y., Nagao, T., Yamamoto, T., Ogita, K., & Shimada, Y. (2004). Production of monoacylglycerol of conjugated linoleic acid by esterification followed by dehydration at low temperature using Penicillium camembertii lipase. Journal of Molecular Catalysis B: Enzymatic, 27, 249–254.

    Article  CAS  Google Scholar 

  • Wolski, E., Menusi, E., Remonatto, D., Vardanega, R., Arbter, F., Rigo, E., Ninow, J. L., Mazutti, M. A., Di Luccio, M., Oliveira, D., & Treichel, H. (2009). Partial characterization of lipases produced by a newly isolated Penicillium sp. in solid state and submerged fermentation: a comparative study. LWT- Food Science and Technology, 42(9), 1557–1560.

    Article  CAS  Google Scholar 

  • Wongsakul, S., H-Kittikun, A., & Bornscheuer, U. T. (2004). Lipase-catalyzed synthesis of structured triacylglycerides from 1,3-diacylglycerides. Journal of American Oil Chemist's Society, 81(2), 151–155.

    Article  CAS  Google Scholar 

  • Xu, X. (2004). Biocatalysis for lipid modifications. In N. T. Dunford & H. B. Dunford (Eds.), Nutritionally enhanced edible oil and oilseed processing (pp. 239–263). Champaign: AOCS Press.

    Google Scholar 

  • Yamada Y, Shimizu M, Sugiura M & Yamada N (1999). Process for producing diglycerides. World Patent No 99/09119.

  • Yang, T., Fruekilde, M.-B., & Xu, X. (2003). Applications of immobilized Thermomyces lanuginosa lipase in interesterification. Journal of the American Oil Chemists' Society, 80(9), 881–887.

    Article  CAS  Google Scholar 

  • Yang, Y.-C., Vali, S. R., & Ju, Y.-H. (2003). A process for synthesizing high purity monoglyceride. Journal of Chinese Institute of Chemical Engineering, 34(6), 617–623.

    CAS  Google Scholar 

  • Yang, T., Rebsdorf, M., Engelrud, U., & Xu, X. (2005). Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system. Journal of Agricultural and Food Chemistry, 53, 1475–1481.

    Article  CAS  Google Scholar 

  • Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18, 213–219.

    Article  CAS  Google Scholar 

  • Yesiloglu, Y., & Kilic, I. (2004). Lipase-catalyzed esterification of glycerol and oleic acid. Journal of the American Oil Chemists' Society, 81(3), 281–284.

    Article  CAS  Google Scholar 

  • Zaks A & Gross AK (1999). Enzymatic production of monoglycerides containing omega-3 unsaturated fatty acids. US Patent No 5935828.

  • Zhong, N., Li, L., Xu, X., Cheong, L.-Z., Zhao, X., & Li, B. (2010). Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chemistry, 122(1), 228–232.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Santa Catarina, Brazil, is appreciated. A post-doctorate Fellowship for the first author (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brazil) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Manuela Camino Feltes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feltes, M.M.C., de Oliveira, D., Block, J.M. et al. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Technol 6, 17–35 (2013). https://doi.org/10.1007/s11947-012-0836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0836-3

Keywords

Navigation