Skip to main content
Log in

Virtual Fruit Tissue Generation Based on Cell Growth Modelling

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A cell-growth-based algorithm is presented based on the biomechanics of plant cells in tissues to help explain the typical differences in cellular architecture found between different pome fruit species, cultivars and tissues. The cell was considered as a closed thin-walled structure, maintained in tension by turgor pressure. The cell walls of adjacent cells were modelled as parallel and linearly elastic elements, which obeyed Hooke’s law. A Voronoi tessellation was used to generate the initial topology of the cells. Cell expansion then resulted from turgor pressure acting on the yielding cell wall material. To find the sequence positions of each vertex of the cell walls, and thus, the shape of the cells with time, a system of differential equations for the positions and velocities of each vertex were established and solved using a Runge–Kutta fourth and fifth order (ODE45) method. The model was used to generate realistic 2D fruit tissue structures composed of cells of random shapes and sizes, cell walls and intercellular spaces. Comparison was made with fruit tissue micrographs. The virtual tissues can be used for numerical simulation of heat and mass transfer phenomena or mechanical deformation during controlled atmosphere storage of fresh pome fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baskin, T. I. (2005). An anisotropic expansion of the plant cell wall. Annual Review of Cell and Developmental Biology, 21, 203–222.

    Article  CAS  Google Scholar 

  • Dupuy, L., Mackenzie, J., & Haseloff, J. (2010). Coordination of plant cell division and expansion in a simple morphogenetic system. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2711–2716.

    Article  CAS  Google Scholar 

  • Dupuy, L., Mackenzie, J., Rudge, T., & Haseloff, J. (2008). A system for modeling cell–cell interactions during plant morphogenesis. Annals of Botany, 101(8), 1255–1265.

    Article  Google Scholar 

  • Fisher, J. B., & Honda, H. (1977). Computer simulations of branching pattern and geometry in Terminalia (Combretacea), a tropical tree. Botanical Gazette, 138(4), 377–384.

    Article  Google Scholar 

  • Fisher, J. B., & Honda, H. (1979). Branch geometry and effective leaf area: A study of Terminalia-branching pattern parts I & II. American Journal of Botany, 66, 633–655.

    Article  Google Scholar 

  • Franck, C., Lammertyn, J., Ho, Q., Verboven, P., Verlinden, B., & Nicolaï, B. (2007). Browning disorders in pear fruit. Postharvest Biology and Technology, 43(1), 1–13.

    Article  CAS  Google Scholar 

  • Ho, Q., Verboven, P., Mebatsion, H., Verlinden, B., Vandewalle, S., & Nicolaï, B. (2009). Microscale mechanisms of gas exchange in fruit tissue. The New Phytologist, 182(1), 163–174.

    Article  CAS  Google Scholar 

  • Ho, Q., Verboven, P., Verlinden, B., Herremans, E., Wevers, M., Carmeliet, J., & Nicolaï, B. (2011). A 3-D multiscale model for gas exchange in fruit. Plant Physiology, 155(3), 1158–1168.

    Article  CAS  Google Scholar 

  • Ho, Q. T., Verboven, P., Verlinden, B. E., Lammertyn, J., Vandewalle, S., & Nicolaï, B. M. (2008). A continuum model for metabolic gas exchange in pear fruit. PLoS Computational Biology, 4(3), e1000023.

    Article  Google Scholar 

  • Ho, Q., Verboven, P., Verlinden, B., Schenk, A., Delele, M., Rolletschek, H., Vercammen, J., & Nicolaï, B. (2010). Genotype effects on internal gas gradients in apple fruit. Journal of Experimental Botany, 61(10), 2745–2755.

    Article  CAS  Google Scholar 

  • Ho, Q., Verlinden, B., Verboven, P., Vandewalle, S., & Nicolaï, B. (2006). A permeation-diffusion-reaction model of gas transport in cellular tissue of plant materials. Journal of Experimental Botany, 57(15), 4215–4224.

    Article  CAS  Google Scholar 

  • Justel, A., Pena, D., & Zamar, R. (1997). A multivariant Kolmogorov–Smirnov test of goodness of fit. Statistics and Probability Letters, 35, 251–259.

    Article  Google Scholar 

  • Lammertyn, J., Scheerlinck, N., Jancsók, P., Verlinden, B., & Nicolaï, B. (2003a). A respiration-diffusion model for 'Conference' pears I: model development and validation. Postharvest Biology and Technology, 30(1), 29–42.

    Article  Google Scholar 

  • Lammertyn, J., Scheerlinck, N., Jancsók, P., Verlinden, B. E., & Nicolaï, B. M. (2003b). A respiration-diffusion model for 'conference' pears. II. simulations and relation to core breakdown. Postharvest Biology and Technology, 30(1), 43–55.

    Article  Google Scholar 

  • Lindenmayer, A. (1968). Mathematical model for cellular interaction in development, parts I & II. Journal of Theoretical Biology, 18, 280–315.

    Article  CAS  Google Scholar 

  • Lindenmayer, A. (1984). Models of plant tissue development with cell division orientation regulated by preprophase bands of microtubules. Differentiation, 26, 1–10.

  • Lindenmayer, A. (1987). Models for multicellular development: Characterization, inference and complexity of L-Systems. In A. Kelmonovà & J. Kelmen (Eds.), Trends, techniques and problems in theoretical computer science (Lecture notes in computer science 281, pp. 138–168). Berlin: Springer.

    Chapter  Google Scholar 

  • Lindenmayer, A., & Prusinkiewicz, P. (1989). Developmental models of multicellular organisms: A computer graphics perspective. In C. Langton (Ed.), Artificial life: Proceedings of an interdisciplinary workshop on the synthesis and simulations of living systems held on September, 1987, in Los Alamos, New Mexico (pp. 221–249). Redwood City: Addison-Wisley.

    Google Scholar 

  • Mebatsion, H. K., Verboven, P., Ho, Q. T., Mendoza, F., Verlinden, B. E., Nguyen, T. A., & Nicolaï, B. M. (2006b). Modelling fruit microstructure using novel ellipse essellation algorithm. CMES: Computer Modeling in Engineering & Sciences, 14(1), 1–14.

    Google Scholar 

  • Mebatsion, H., Verboven, P., Jancsók, P., Ho, Q., Verlinden, B., & Nicolaï, B. (2008). Modelling 3D fruit tissue microstructure using a novel ellipsoid tessellation algorithm. CMES: Computer Modeling in Engineering & Sciences, 29(3), 137–149.

    Google Scholar 

  • Mebatsion, H., Verboven, P., Melesse, A. E., Billen, J., Ho, Q., & Nicola, B. (2009). A novel method for 3-D microstructure modelling of pome fruit tissue using synchrotron radiation tomography image. Journal of Food Engineering, 93(2), 141–148.

    Article  Google Scholar 

  • Mebatsion, H. K., Verboven, P., Verlinden, B. E., Ho, Q. T., Nguyen, T. A., & Nicolaï, B. M. (2006a). Microscale modelling of fruit tissue using Voronoi tessellations. Computers and Electronics in Agriculture, 52, 36–48.

    Article  Google Scholar 

  • Nakamura, A., Lindenmayer, A., & Aizawa, A. (1986). Some systems for map generation. In G. Rozenberg & A. Salomaa (Eds.), The Book of L (pp. 323–332). Springer-Verlag, Berlin.

  • Nguyen, T. A., Dresselaers, T., Verboven, P., D'hallewin, G., Culeddu, N., Van Hecke, P., & Nicolaï, B. M. (2006). Finite element modelling and MRI validation of 3d transient water profiles in pears during postharvest storage. Journal of the Science of Food and Agriculture, 86(5), 745–756.

    Article  CAS  Google Scholar 

  • Rudge, T., & Haseloff, J. (2005). A computational model of cellular morphogenesis in plants. Lecture Notes in Computer Science: Advances in Artificial Life, 3630, 78–87.

    Article  Google Scholar 

  • Studman, J. (1999). Fruit and vegetables, handling systems and packaging. In F. W. Bakker-Arkema (Ed.), The International Commission of Agricultural Engineering, Hand Book of Agricultural Engineering, Agro Processing Engineering (pp. 291–339). Niles Road: The Society for Engineering in Agriculture, Food, and Biological Systems.

    Google Scholar 

  • Tao, S. T., Khanizadeh, S., & Zhang, S. L. (2009). Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Science, 176, 413–419.

    Article  CAS  Google Scholar 

  • Verboven, P., Kerckhofs, G., Mebatsion, H. K., Ho, Q. T., Temst, K., Wevers, M., Cloetens, P., & Nicolaï, B. M. (2008). 3-D gas exchange pathways in pome fruit characterised by synchrotron X-ray computed tomography. Plant Physiology, 47, 518–527.

    Article  Google Scholar 

  • Wu, N., & Pitts, M. J. (1999). Development and validation of a finite element model of an apple fruit cell. Postharvest Biology and Technology, 16, 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Flanders Fund for Scientific Research (project FWO G.0603.08), K.U. Leuven (project OT 08/023) and the EC (project InsideFood FP7-226783) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart M. Nicolai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abera, M.K., Fanta, S.W., Verboven, P. et al. Virtual Fruit Tissue Generation Based on Cell Growth Modelling. Food Bioprocess Technol 6, 859–869 (2013). https://doi.org/10.1007/s11947-011-0775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0775-4

Keywords

Navigation