Skip to main content

Advertisement

Log in

Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Changes in proximate composition of fish and rice flour coextrudates like moisture, protein, and fat content were studied with respect to extrusion process variables like barrel temperature, x 1 (100–200 °C); screw speed, x 2 (70–110 rpm); fish content of the feed, x 3 (5–45%); and feed moisture content, x 4 (20–60%). Experiments were conducted at five levels of the process variables based on rotatable experimental design. Response surface models (RSM) were developed that adequately described the changes in moisture, protein, and fat content of the extrudates based on the coefficient of determination (R 2) values of 0.95, 0.99, and 0.94. ANOVA analysis indicated that extrudate moisture content was influenced by x 4, protein content by x 1 and x 3, and fat content by x 3 and x 4 at P < 0.001. Trends based on response surface plots indicated that the x 1 of about 200 °C, x 2 of about 90 rpm, x 3 of about 25%, and x 4 of about 20% minimized the moisture in the extrudates. Protein content was maximized at x 1 of 100 °C, x 2 > 80 rpm, x 3 of about 45%, and x 4 > 50%, and fat content was minimized at x 1 of about 200 °C, x 2 of about 85–95 rpm, x 3 < 15%, and x 4 of about >50%. Optimized process variables based on a genetic algorithm (GA) for minimum moisture and fat content and maximum protein content were x 1 = 199.86, x 2 = 109.86, x 3 = 32.45, x 4 = 20.03; x 1 = 199.71, x 2 = 90.09, x 3 = 15.27, x 4 = 58.47; and x 1 = 102.97, x 2 = 107.67, x 3 = 44.56, x 4 = 59.54. The predicted values were 17.52%, 0.57%, and 46.65%. Based on the RSM and GA analysis, extrudate moisture and protein content was influenced by x 1, x 3, and x 4 and fat content by x 2, x 3, and x 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ε :

Random error

ANOVA:

Analysis of variance

b o :

intercept

b 0, b i , b j :

Coefficients of regression equations

FAO:

Food and Agriculture Organization

f i :

Fitness values

GA:

Genetic algorithm

H2SO4 :

Sulfuric acid

HTST:

High temperature short time

n :

Number of independent variables

NaOH:

Sodium hydroxide

N i :

Number of individuals in the population

P :

Statistical significance

p i :

Position of the individual

RSM:

Response surface methodology

SP:

Selective pressure

temp:

Temperature

w.b.:

Wet basis

x 1 :

Barrel temperature

x 2 :

Screw speed

x 3 :

Fish content

x 4 :

Feed moisture content

y :

Dependent variable

References

  • Aboagye, T., & Stanley, D. W. (1987). Thermoplastic extrusion of peanut flour by twin screw extruder. Canadian Institute of Food Science and Technology, 20(3), 148–153.

    Google Scholar 

  • AOAC (1990) Official methods of analysis, 12th edn. Association of Official Analytical Chemists, Washington, DC, pp. 684.

  • Baik, B. K., Powers, J., & Nguyen, L. T. (2004). Extrusion of regular and waxy barley flours for production of expanded cereals. Cereal Chemistry, 81, 94–99.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., & Rout, R. K. (2001). Aquafeed extrudate flow rate and pellet characteristics from low-cost single screw extruder. Journal of Aquatic Food Product Technology, 10(2), 3–15.

    Article  Google Scholar 

  • Bhattacharya, M., & Hanna, M. A. (1987). Textural properties of extrusion-cooked cornstarch. LWT—Food Science and Technology, 20, 195–201.

    Google Scholar 

  • Bhattacharya, S., & Prakash, M. (1994). Extrusion blends of rice and chickpea flours: a response surface analysis. Journal of Food Engineering, 21(3), 315–330.

    Article  Google Scholar 

  • Bhattacharya, S., Das, H., & Bose, A. N. (1992). Rheological behaviour during extrusion of blends of minced fish and wheat flour. Journal of Food Engineering, 15(2), 123–137.

    Article  Google Scholar 

  • Braga, A. R. C., Gomes, P. A., & Kalil, S. J. (2011). Formulation of culture medium with agroindustrial waste for β-galactosidase production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology. doi:10.1007/s11947-011-0511-0.

  • Camire, M. E., Camire, H., & Krumhar, K. (1990). Chemical and nutritional changes in food during extrusion. CRC Critical Reviews in Food Science and Nutrition, 29, 35.

    Article  CAS  Google Scholar 

  • Camire, M., Clykink, C., & Bittner, R. (1991). Characteristics of extruded mixture of cornmeal and glandless cottonseed flour. Cereal Chemistry, 68(64), 419–424.

    Google Scholar 

  • Chaiyakul, S., Jangchud, K., Jangchud, A., Wuttijumnong, P., & Winger, R. (2009). Effect of extrusion conditions on physical and chemical properties of high protein glutinous rice-based snack. LWT—Food Science and Technology, 42, 781–787.

    CAS  Google Scholar 

  • Cheftel, J. C. (1986). Nutritional effects of extrusion-cooking. Food Chemistry, 20, 263–283.

    Article  CAS  Google Scholar 

  • Chiang, B. Y., & Johnson, J. A. (1977). Gelatinization of starch in extruded products. Cereal Chemistry, 54, 436.

    CAS  Google Scholar 

  • Chinnaswamy, R., & Hanna, M. A. (1988). Optimum extrusion-cooking conditions for maximum expansion of corn starch. Journal of Food Science, 53, 834–837.

    Article  Google Scholar 

  • Colonna, P., Doublies, J. L., Melcion, J. P., Demonredon, F., & Mercier, C. (1984). Extrusion cooking and drum drying of wheat starch. I. Physical and macromolecular modifications. Cereal Chemistry, 61, 538–540.

    CAS  Google Scholar 

  • Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (1st ed.). Chichester: Wiley.

    Google Scholar 

  • Della Valle, G., Quillien, L., & Gueguen, J. (1994). Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour. Journal of Agricultural and Food Chemistry, 64, 509–517.

    Article  CAS  Google Scholar 

  • Emadzadeh, B., Razavi, S. M. A., & Mahallati, M. N. (2011). Effects of fat replacers and sweeteners on the time-dependent rheological characteristics and emulsion stability of low-calorie pistachio butter: a response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-010-0490-6.

  • Falcone, R. G., & Phillips, R. D. (1988). Effects of feed composition, feed moisture and barrel temperature on physical and rheological properties of snack like products prepared from cowpea and sorghum flours by extrusion. Journal of Food Science, 53, 1464–1469.

    Article  Google Scholar 

  • FAO. (1995). World agriculture: towards 2010. In N. Alexandros (Ed.), An FAO study (p. 488). Chichester: Wiley.

    Google Scholar 

  • Faubion, J. M., & Hoseney, R. C. (1982). High-temperature short-time extrusion cooking of wheat starch and flour. I. Effect of moisture and flour type on extrudate properties. Cereal Chemistry, 59, 529–533.

    Google Scholar 

  • Fletcher, B. I., Richmond, P., & Smith, A. C. (1985). An experimental study of twin-screw extrusion-cooking of maize grits. Journal of Food Engineering, 4(4), 291–312.

    Article  Google Scholar 

  • Frazier, P. H., Crawshaw, A., Daniels, N. W. R., & Eggitt, P. W. R. (1983). Optimization of process variables in extrusion cooking of soya. In Jowitt (Ed.), Extrusion cooking technology (pp. 1–26). London: Elsevier Applied Science.

    Google Scholar 

  • Funes, J., & Karel, M. (1981). Free radical polymerization and lipid binding of lysozyme reacted with peroxidizing linoleic acid. Lipids, 16, 347.

    Article  CAS  Google Scholar 

  • Giri, S. K., & Bandyopadhyay, S. (2000). Effect of extrusion variables on extrudate characteristics of fish muscle–rice flour blend in single screw extruder. Journal of Food Processing and Preservation, 24, 177–190.

    Article  Google Scholar 

  • Gregson, C. M., & Lee, T.-C. (2004). Quality modification of food by extrusion processing: In: F. Shahidi, A. M. Spanier, Ho. Chi-Tang, & T. Braggins (Eds.) Quality of fresh and processed foods: advances in experimental medicine and biology, 542, 187–200.

  • Guy, R. (2001). Extrusion cooking, technologies and applications. Boca Ration: CRC.

    Book  Google Scholar 

  • Hii, L. S., Rosfarizan, M., Ling, T. C., & Ariff, A. B. (2011). Statistical optimization of pullulanase production by Raoultella planticola DSMZ 4617 using sago starch as carbon and peptone as nitrogen sources. Food and Bioprocess Technology. doi:10.1007/s11947-010-0368-7.

  • Hoan, N. V., Mouquwt-Rivier, C., & Treche, S. (2008). Effects of starch, lipid and moisture contents on extrusion behaviour and extrudate characteristics of rice based blends prepared with a very low cost extruder. Journal of Food Process Engineering, 33, 519–539.

    Article  Google Scholar 

  • Holay, S. H., & Harper, J. M. (1982). Influence of extrusion shear environment on plant protein texturization. Journal of Food Science, 47, 1869–1873.

    Article  Google Scholar 

  • Holland, J. H. (1992). Genetic algorithms. Scientific American, pp. 66–72.

  • Ilo, S., & Berghofer, E. (2003). Kinetics of lysine and other amino acids loss during extrusion cooking of maize grits. Journal of Food Science, 68(2), 496–502.

    Article  CAS  Google Scholar 

  • Karwe, M. V. (2003). Food extrusion. In: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. Oxford, UK: EOLSS Publishers.

  • Kebede, L., Worku, S., Bultosa, G., & Yetneberek, S. (2010). Effect of extrusion operating conditions on the physical and sensory properties of tef (Eragrostis tef [Zucc.] Trotter) flour extrudates. Ethiopian Journal of Applied Sciences and Technology, 1(1), 27–38.

    Google Scholar 

  • Khuri, A. Z., & Cornell, J. A. (1987). Response surface designs and analysis. New York: Marcel Dekker.

    Google Scholar 

  • Kokini, J. L., Chang, C. N., & Lai, L. S. (1992). The role of rheological properties on extrudate expansion. In J. L. Kokini, C. T. Ho, & M. V. Karwe (Eds.), Food extrusion science and technology (Vol. 740, pp. 631–652). New York: Marcel Dekker.

    Google Scholar 

  • Kuang, S. S., Oliveira, J. C., & Crean, A. M. (2011). An analysis of the influence of multiple processing factors on the characteristics of bioactive-loaded beads prepared by extrusion–spheronisation. Food and Bioprocess Technology. doi:10.1007/s11947-009-0308-6.

  • Lawton, B. T., Henderson, G. A., & Derlatke, E. J. (1972). The effects of extruder variables on the gelatinization of corn starch. Canadian Journal of Chemical Engineering, 50, 168–171.

    Article  CAS  Google Scholar 

  • Lin, Y., Hsieh, F., Heymann, H., & Huff, H. E. (2000). Effect of process conditions on the physical and sensory properties of extruded oat-corn puff. Journal of Food Science, 65, 1253–1259.

    Article  Google Scholar 

  • Maurice, T. J., & Stanley, D. W. (1978). Texture–structure relationship in texturized soy protein. IV: Influence of process variable on extrusion texturization. Canadian Institute of Food Science and Technology Journal, 11(1), 1–5.

    CAS  Google Scholar 

  • Mercier, C., & Feillet, P. (1975). Modification of carbohydrate components by extrusion cooking of cereal products. Cereal Chemistry, 52, 283.

    CAS  Google Scholar 

  • Miller, R. C. (1985). Low moisture extrusion. Effects of cooking moisture on product characteristics. Journal of Food Science, 50(1), 249–252.

    Article  Google Scholar 

  • Mohebbi, M., Fathi, M., & Shahidi, F. (2011). Genetic algorithm–artificial neural network modeling of moisture and oil content of pretreated fried mushroom. Food and Bioprocess Technology, 4(4), 603–609.

    Article  CAS  Google Scholar 

  • Myers, R. H. (1971). Response surface methodology (p. 246). Allyn and Bacon: Boston.

    Google Scholar 

  • Noguchi, A., Mosso, C., Aymard, C., Jeunink, J., & Cheftel, J. C. (1982). Maillard reactions during extrusion cooking of protein-enriched biscuits. Lebensmittel-Wissenschaft und Technologie, 15, 105.

    CAS  Google Scholar 

  • Oluwole, B. O., & Olapade, A. A. (2011). Effect of extrusion cooking of white yam (Dioscorea rotundata) and bambara-nut (Vigna subterranea) blend on some selected extrudate parameters. Food and Nutrition Sciences, 2, 599–605.

    Article  Google Scholar 

  • Onyango, C., Henle, T., Ziems, A., Hofmann, T., & Bley, T. (2004). Effect of extrusion variables on fermented maize–finger millet blend in the production of uji. Lebensmittel-Wissenschaft und Technologie, 37, 409–415.

    CAS  Google Scholar 

  • Ovissipour, M., Kenari, A. A., Motamedzadegan, A., & Nazari, R. A. (2010). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food and Bioprocess Technology. doi:10.1007/s11947-010-0357-x.

  • Phillips, A., Chinnan, M. S., & Kennedy, M. B. (1984). Effect of feed moisture and barrel temperature on physical properties of extruded cowpea meal. Journal of Food Science, 49(3), 916–921.

    Article  Google Scholar 

  • Prinyawiwatkul, W., Beuchat, L. R., Phillips, R. D., & Ressurreccion, A. V. A. (1995). Modelling the effects of peanut flour, feed moisture content, and extrusion temperature on physical properties of an extruded snack product. International Journal of Food Science and Technology, 30, 37–44.

    CAS  Google Scholar 

  • Ranganna, S. (2000). Hand book of analysis and quality control for fruit and vegetable products. New Delhi: Tata–McGraw Hill.

    Google Scholar 

  • Riaz, M. N. (2000). Extruders in food applications (1st ed.). Lancaster: Technomic.

    Google Scholar 

  • Riaz, M. N. (2009). The role of extrusion technology on feed safety and hygiene. In: 17th Annual ASAIM SEA Feed Technology and Nutrition Workshop, 15–19 June 2009, Imperial Hotel, Hue, Vietnam.

  • Rout, R. K., & Bandyopadhyay, S. (1999). A comparative study of shrimp feed pellets processed through cooking extruder and meat mincer. Aquacultural Engineering, 19, 71–79.

    Article  Google Scholar 

  • Sacchetti, G., Pinnavaia, G. G., Guidolin, E., & Dalla Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour-based snack-like products. Food Research International, 37, 527–534.

    Article  Google Scholar 

  • Santillán-Moreno, A., Martínez-Bustos, F., Castaño-Tostado, E., & Amaya-Llano, S. L. (2011). Physicochemical characterization of extruded blends of corn starch–whey protein concentrate–Agave tequilana fiber. Food and Bioprocess Technology, 4(5), 797–808.

    Article  Google Scholar 

  • Shankar, T. J., & Bandyopadhyay, S. (2004). Optimization of extrusion process variables using a genetic algorithm. Food and Bioproducts Processing, 82(C2), 143–150.

    Article  Google Scholar 

  • Shankar, T. J., & Bandyopadhyay, S. (2005). Process variables during single screw extrusion of fish and rice flour blends. Journal of Food Processing and Preservation, 29, 151–164.

    Article  Google Scholar 

  • Shankar, T. J., & Sokhansanj, S. (2010). A case study on investigating the effect of genetic algorithm operators on predicting the global minimum hardness value of biomaterial extrudate. International Journal of Optimization: Theory, Methods and Applications, 2(2), 109–123.

    Google Scholar 

  • Shankar, T. J., Shahab, S., Bandyopadhyay, S., & Bawa, A. S. (2010a). A case study on optimization of biomass flow during single-screw extrusion cooking using genetic algorithm (GA) and response surface method (RSM). Food and Bioprocess Technology, 3(4), 498–510.

    Article  Google Scholar 

  • Shankar, T. J., Shahab, S., Bandyopadhyay, S., & Bawa, A. S. (2010b). Storage properties of low fat fish and rice flour coextrudates. Food and Bioprocess Technology, 3(4), 481–490.

    Article  CAS  Google Scholar 

  • Singh, B., Sekhon, K. S., & Singh, N. (2007). Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry, 100, 198–202.

    Article  CAS  Google Scholar 

  • Tavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2009). Optimization of Corynebacterium glutamicum glutamic acid production by response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-009-0242-7.

  • Thymi, S., Krokida, M. K., Pappa, A., & Maroulis, Z. B. (2005). Structural properties of extruded corn starch. Journal of Food Engineering, 68(4), 519–526.

    Article  Google Scholar 

  • Tumuluru, J. S. (2003). Single screw extrusion studies of fish and rice flour blends. PhD thesis. Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India.

  • Ummadi, P., Chenoweth, W. L., & Ng, P. K. W. (1995). Changes in solubility and distribution of semolina proteins. Cereal Chemistry, 72(6), 564–567.

    CAS  Google Scholar 

  • van Lengerich, B. (1990). Influence of extrusion processing on in-line rheological behavior, structure and function of wheat starch. In H. Faridi & J. M. Faubion (Eds.), Dough rheology and baked product texture (Vol. 603, pp. 421–472). New York: Van Nostrand Reinhold.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Leslie Park Ovard and Lisa Plaster of Idaho National Laboratory, Idaho Falls, USA for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Shankar Tumuluru.

Additional information

Corresponding author carried out the research in the Department of Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumuluru, J.S., Sokhansanj, S., Bandyopadhyay, S. et al. Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking. Food Bioprocess Technol 6, 403–415 (2013). https://doi.org/10.1007/s11947-011-0764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0764-7

Keywords

Navigation