Skip to main content
Log in

Effect of Olive Leaves Addition during the Extraction Process of Overmature Fruits on Olive Oil Quality

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The harvest period is one of the most important factors influencing olive oil quality. This period is extended for several months and the late-extracted olive oils are characterized by quality loss and reduced resistance to oxidation. The aim of this work was to verify the effect of olive leaves addition during the oil extraction process in the olive oils quality and composition. In two consecutive years (2009 and 2010), different olive leaves amounts (1%, 2.5%, 5% and 10% w/w) were added during the extraction process of cv. Cobrançosa olive fruits, collected in the late season. Standard quality parameters, oxidative stability, fatty acids profile, tocopherols, chlorophylls, and carotenoids contents were evaluated. Olive leaves addition induces a slight increase in acidity, peroxide value, K232, and K270 without compromising olive oils classification, but the resistance to oxidation was significantly improved. Vitamin E increased nearly 30% with 10% of leaves added mainly due to the considerable increase in α-tocopherol. A similar effect was observed in the contents of chlorophylls (chlorophyll a and pheophytin a) and carotenoids (lutein and β-carotene), that attributed a more intense greener pigmentation and enhanced nutritional attributes. Significant correlations were observed for several parameters with the amounts of leaves added. Moreover, leaves addition modified the characteristics and composition of the olive oils in a way that was possible to discriminate and to classify each group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achir, N., Randrianatoandro, V. A., Bohuon, P., Laffargue, A., & Avallone, S. (2010). Kinetic study of β-carotene and lutein degradation in oils during heat treatment. European Journal of Lipid Science and Technology., 112, 349–361.

    CAS  Google Scholar 

  • Bouaziz, M., Fki, I., Jemai, H., Ayadi, M., & Sayadi, S. (2008). Effect of storage on refined and husk olive oils composition; stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chemistry, 108, 253–262.

    Article  CAS  Google Scholar 

  • Briante, R., Patumi, M., Terenziani, S., Bismuto, E., Febbraio, F., & Nucci, R. (2002). Olea europaea L. leaf extract and derivatives: antioxidant properties. Journal of Agricultural and Food Chemistry, 50, 4934–4940.

    Article  CAS  Google Scholar 

  • Casal, S., Malheiro, R., Sendas, A., Oliveira, B. P. P., & Pereira, J. A. (2010). Olive oil stability under deep-frying conditions. Food and Chemical Toxicology, 48, 2972–2979.

    Article  CAS  Google Scholar 

  • Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169–186.

    Article  CAS  Google Scholar 

  • Commission Regulation (EC) No 1989/2003 of 6 November 2003, amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis.

  • Commission Regulation (EEC) No 2568/91 of 11 July 1991, on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis.

  • Di Bella, G., Maisano, R., La Pera, L., Lo Turco, V., Salvo, F., & Dugo, G. (2007). Statistical characterization of Sicilian olive oils from the Peloritana and Maghrebian zones according to the fatty acids profile. Journal of Agricultural and Food Chemistry, 55, 6568–6574.

    Article  Google Scholar 

  • Farag, R. S., El-Baroty, G. S., & Basuny, A. M. (2003). The influence of phenolic extracts obtained from the olive plant (cvs. Picual and Kronakii), on the stability of sunflower oil. International Journal of Food Science and Technology, 38, 81–87.

    Article  CAS  Google Scholar 

  • Ferreira, I. C. F. R., Barros, L., Soares, M. E., Bastos, M. L., & Pereira, J. A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry, 103, 188–195.

    Article  CAS  Google Scholar 

  • García, J. M., Gutiérrez, F., Barrera, M. J., & Albi, M. A. (1996a). Storage of mil olives on an industrial scale. Journal of Agricultural and Food Chemistry, 44, 590–593.

    Article  Google Scholar 

  • García, J. M., Seller, S., & Pérez-Camino, M. C. (1996b). Influence of fruit ripening on olive oil quality. Journal of Agricultural and Food Chemistry, 44, 3516–3520.

    Article  Google Scholar 

  • Gurdeniz, G., & Ozen, B. (2009). Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry, 116, 519–525.

    Article  CAS  Google Scholar 

  • Gutierrez, F., Garrido, J., Gallardo, L., Gandul, B., & Minguez, M. I. (1992). Action of chlorophylls on the stability of virgin olive oil. Journal of the American Oil Chemists’ Society, 69, 866–871.

    Article  Google Scholar 

  • Gutiérrez, F., Arnaud, T., & Garrido, A. (2001). Contribution of polyphenols to the oxidative stability of virgin olive oil. Journal of the Science of Food and Agriculture, 81, 1463–1470.

    Article  Google Scholar 

  • Hermoso, M., Uceda, M., García, A., Morales, B., Frias, M.L. & Fernández, A. (1991). Elaboración de Aceite de Calidad; Consejeria de Agricultura y Pesca, Serie Apuntes 5/92; Sevilla, Spain.

  • Hooper, L., Bartlett, C., Smith, G. D., & Ebrahim, S. (2002). Systematic review of long-term effects of advice to reduce dietary salt in adults. British Medical Journal, 325, 628–632.

    Article  Google Scholar 

  • International Olive Council (2010). Available at: http://www.internationaloliveoil.org. Accessed 8 July 2011.

  • ISO 9936 (2006). Animal and vegetable fats and oils—determination of tocopherol and tocotrienol contents by high-performance liquid chromatography.

  • Kiritsakis, K., Kontominas, M. G., Kontogiorgis, C., Hadjipavlou-Litina, D., Moustakas, A., & Kiritsakis, A. (2010). Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. Journal of the American Oil Chemists’ Society, 87, 369–376.

    Article  CAS  Google Scholar 

  • Korukluoglu, M., Sahan, Y., Yigit, A., Ozer, E. T., & Gucer, S. (2010). Antibacterial activity and chemical constitutions of Olea europaea L. leaf extracts. Journal of Food Processing and Preservation, 34, 383–396.

    Article  CAS  Google Scholar 

  • Laguerre, E. P., Lecomte, J., & Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation; existing methods, new trends and challenges. Progress in Lipid Research, 46, 244–282.

    Article  CAS  Google Scholar 

  • Laguerre, M., Giraldo, L. J. L., Piombo, G., Figueroa-Espinoza, M. C., Pina, M., Benaissa, M., et al. (2009). Characterization of olive-leaf phenolics by ESI-MS and evaluation of their antioxidant capacities by the CAT assay. Journal of the American Oil Chemists’ Society, 86, 1215–1225.

    Article  CAS  Google Scholar 

  • Lee, O.-H., Lee, B.-Y., Lee, J., Lee, H.-B., Son, J.-Y., Park, C.-S., et al. (2009). Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresource Technology, 100, 6107–6113.

    Article  CAS  Google Scholar 

  • Lin, P., Chen, Y., & He, Y. (2009). Identification of geographical origin of olive oil using visible and near-infrared spectroscopy technique combined with chemometrics. Food and Bioprocess Technology. doi:10.1007/s11947-009-0302-z.

  • Lizhi, H., Toyoda, K., & Ihara, I. (2010). Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of Food Engineering, 96, 167–171.

    Article  Google Scholar 

  • López, A., García, P., & Garrido, A. (2008). Multivariate characterization of table olives according to their mineral nutrient composition. Food Chemistry, 106, 369–378.

    Article  Google Scholar 

  • Lucas, A., Martinez de la Ossa, E., Rincón, J., Blanco, M. A., & Garcia, I. (2002). Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. Journal of Supercritical Fluids, 22, 221–228.

    Article  Google Scholar 

  • Malheiro, R., Casal, S., Ramalhosa, E. & Pereira, J.A. (2011a). Microwave heating: a time saving technology or a way to induce vegetable oils oxidation? In: Grundas S (Ed.) Advances in induction and microwave heating of mineral and organic materials (pp 597–614). InTech, Rijeka, Croatia.

  • Malheiro, R., Sousa, A., Casal, S., Bento, A., & Pereira, J. A. (2011b). Cultivar effect on the phenolic composition and antioxidant potential of stoned green table olives. Food and Chemical Toxicology, 49, 450–457.

    Article  CAS  Google Scholar 

  • Malheiro, R., Casal, S., Sousa, A., Guedes de Pinho, P., Peres, A. M., Dias, L. G., et al. (2011c). Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food and Bioprocess Technology. doi:10.1007/s11947-011-0567-x.

  • Mannina, L., Dugo, G., Salvo, F., Cicero, L., Ansanelli, G., Calcagni, C., et al. (2003). Study of the cultivar–composition relationship in Sicilian olive oils by GC, NMR and statistical methods. Journal of Agricultural and Food Chemistry, 51, 120–127.

    Article  CAS  Google Scholar 

  • Maroco, J. (2003). Análise Estatística, com utilização do SPSS. Lisboa: Edições Sílabo.

    Google Scholar 

  • Martinéz-Suárez, J. M. (1973). Recientes estúdios de la almazara experimental del instituto de la grasa. Rivista Italiana delle Sostanze Grasse, 50, 325–330.

    Google Scholar 

  • Matos, L. C., Cunha, S. C., Amaral, J. S., Pereira, J. A., Andrade, P. B., Seabra, R. M., et al. (2007). Chemometric characterization of three varietal olive oils (Cvs. Cobrançosa, Madural and Verdeal Transmontana) extracted from olives with different maturation indices. Food Chemistry, 102, 406–414.

    Article  CAS  Google Scholar 

  • Meirinhos, J., Silva, B. M., Valentão, P., Seabra, R. M., Pereira, J. A., Dias, A., et al. (2005). Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Natural Product Research, 19, 189–195.

    Article  CAS  Google Scholar 

  • Morrissey, P. A., & Sheehy, P. J. A. (1999). Optimal nutrition: vitamin E. Proceedings of the Nutrition Society, 58, 459–468.

    Article  CAS  Google Scholar 

  • Nouros, P. G., Georgiou, C. A., & Polissiou, M. G. (1999). Direct parallel flow injection multichannel spectrophotometric determination of olive oil peroxide value. Analytica Chimica Acta, 389, 239–245.

    Article  CAS  Google Scholar 

  • Oliveros, C. C., Boggia, R., Casale, M., Armanino, C., & Forina, M. (2005). Optimisation of a new headspace mass spectrometry instrument: discrimination of different geographical origin olive oils. Journal of Chromatography. A, 1076, 7–15.

    Article  Google Scholar 

  • Paiva-Martins, F., Correia, R., Felix, S., Ferreira, P., & Gordon, M. (2007). Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. Journal of Agricultural and Food Chemistry, 55, 4139–4143.

    Article  CAS  Google Scholar 

  • Pereira, J. A., Casal, S., Bento, A., & Oliveira, M. B. P. P. (2002). Influence of olive storage period on oil quality of three Portuguese cultivars of Olea europaea, Cobrançosa, Madural and Verdeal Transmontana. Journal of Agricultural and Food Chemistry, 50, 6335–6340.

    Article  CAS  Google Scholar 

  • Pereira, J. A., Alves, M. R., Casal, S., & Oliveira, M. B. P. P. (2004). Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural and Verdeal Transmontana. Italian Journal of Food Science, 16, 355–365.

    CAS  Google Scholar 

  • Pereira, A. P., Ferreira, I. C. F. R., Marcelino, F., Valentão, P., Andrade, P. B., Seabra, R., et al. (2007). Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12, 1153–1162.

    Article  CAS  Google Scholar 

  • Rencher, A. C. (1995). Methods of multivariate analysis. New York: Wiley.

    Google Scholar 

  • Rotondi, A., Bendini, A., Cerretani, L., Mari, M., Lercker, G., & Toschi, T. G. (2004). Effect of olive ripening degree on the oxidative stability and organoleptic properties of Cv. Nostrana di Brisighella extra virgin olive oil. Journal of Agricultural and Food Chemistry, 52, 3649–3654.

    Article  CAS  Google Scholar 

  • Salta, F. N., Mylona, A., Chiou, A., Boskou, G., & Andrikopoulos, N. K. (2007). Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Science and Technology International, 13, 413–421.

    Article  CAS  Google Scholar 

  • Salvador, M. D., Aranda, F., & Fregapane, G. (2001). Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality. A study of four successive crop seasons. Food Chemistry, 73, 45–53.

    Article  CAS  Google Scholar 

  • Sudjana, A. N., D’Orazio, C., Ryan, V., Rasool, N., Ng, J., Islam, N., et al. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 33, 461–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana Casal or José Alberto Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malheiro, R., Casal, S., Teixeira, H. et al. Effect of Olive Leaves Addition during the Extraction Process of Overmature Fruits on Olive Oil Quality. Food Bioprocess Technol 6, 509–521 (2013). https://doi.org/10.1007/s11947-011-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0719-z

Keywords

Navigation