Skip to main content
Log in

Mangosteen Oil-In-Water Emulsions: Rheology, Creaming, and Microstructural Characteristics during Storage

Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The rheological properties and physical stability of mangosteen (Garcinia mangostana L.) extract in oil-in-water (MIO/W) emulsions were investigated. Rheological study on the emulsions exhibited Newtonian flow behavior. The 20 wt.% emulsion showed higher apparent viscosity than 10 wt.% MIO/W sample. The effects of salt (NaCl) concentration (0, 50, 100, and 200 mM) and heat treatment (70 °C) on the stability of the emulsions were also examined. Heat (70 °C)- and NaCl (100 and 200 mM)-treated emulsions showed creaming and droplet aggregation on storage for a period of 60 days. The 10 wt.% MIO/W emulsions stored at 4 °C showed a homogeneous distribution of oil droplets with good stability to creaming and viscosity independent of shear stress (i.e., a Newtonian liquid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bhattacharya, S., Shylaja, M. H., Manjunnath, M. S., & Udaya Sankar, K. (1998). Rheology of lecithin dispersions. Journal of American Oil Chemical Society, 75, 871–874.

    Article  CAS  Google Scholar 

  • Chen, L. G., Yang, L. L., & Wang, C. C. (2008). Anti-inflammatory activity of mangostins from Garcinia mangostana. Food and Chemical Toxicology, 46, 688–693.

    Article  CAS  Google Scholar 

  • Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces. B, Biointerfaces, 15, 161–176.

    Article  CAS  Google Scholar 

  • Dickinson, E., & Stainsby, G. (1982). Colloids in foods. London: Elsevier Science.

    Google Scholar 

  • Euston, S. R., Finnigan, S. R., & Hirst, R. L. (2000). Aggregation kinetics of heated whey protein-stabilized emulsions. Food Hydrocolloids, 14, 155–161.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Majumdar, A. S. (2011). Drying of exotic tropical fruits: A comprehensive review. Food and Bioprocess Technology, 4, 163–185.

    Article  Google Scholar 

  • Fu, C., Loo, A. E., Chia, F. P., & Huang, D. (2007). Oligomeric proanthocyanidins from mangosteen pericarps. Journal of Agricultural and Food Chemistry, 55, 7689–7694.

    Article  CAS  Google Scholar 

  • Gu, Y. S., Decker, A. E., & McClements, D. J. (2005). Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of beta-lactoglobulin, ι-carrageenan and gelatin. Langmuir, 21, 5752–5760.

    Article  CAS  Google Scholar 

  • Hayati, I. N., Chen Man, Y. B., Tan, C. P., & Aini, I. N. (2007). Stability and rheology of concentrated O/W emulsions based on soybean oil/palm kernel olein blends. Food Research International, 40, 1051–1061.

    Article  CAS  Google Scholar 

  • Little, T. M., & Hills, F. J. (1978). Agricultural experimentation: design and analysis (pp. 247–266). New York: John Wiley and Sons.

    Google Scholar 

  • McClements, D. J. (1999). Food emulsions: Principles, practices, and techniques. Boca Raton, Fla.: CRC Press.

    Google Scholar 

  • Mitidieri, F. E., & Wagner, J. R. (2002). Coalescence of o/w emulsions stabilized by whey and isolate soybean proteins. Influence of thermal denaturation salt addition and competitive interfacial adsorption. Food Research International, 35, 547–557.

    Article  CAS  Google Scholar 

  • Obolskiy, D., Pischel, I., Siriwatanametanon, N., & Heinrich, M. (2009). Garcinia mangostana L: a phytochemical and pharmacological review. Phytotherapy Research, 23, 1047–1065.

    Article  CAS  Google Scholar 

  • Rahalkar, R. R. (1992). Viscoelastic properties of oil-water emulsions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods (pp. 317–354). London: Elsevier Applied Science.

    Google Scholar 

  • Varka, E. M., Ampatzidis, C., Kostoglou, M., Karapantsios, T., & Dutschk, V. (2010). On the use of electrical conductance measurements for the stability of oil-in-water pickering emulsions. Colloids and Surfaces A: Physicochemical Engineering Aspects, 365, 181–188.

    Article  CAS  Google Scholar 

  • Weiss, J. (2002). Current Protocols in Food Analytical Chemistry. D3.4.1-D3.4.17. Supplement 3. John Wiley & Sons, Wilkesboro, NC.

  • Zarena, A. S., Manohar, B., & Udaya Sankar, K. (2010). Optimization of supercritical carbon dioxide extraction of xanthones from mangosteen pericarp by response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-010-0404-7.

Download references

Acknowledgment

The first author, AS Zarena, acknowledges the CSIR, India for the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaya Sankar Kadimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarena, A.S., Bhattacharya, S. & Kadimi, U.S. Mangosteen Oil-In-Water Emulsions: Rheology, Creaming, and Microstructural Characteristics during Storage. Food Bioprocess Technol 5, 3007–3013 (2012). https://doi.org/10.1007/s11947-011-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0695-3

Keywords

Navigation