Skip to main content
Log in

Antimicrobial Activity of Peptide P34 During Thermal Processing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In the present work, the influence of pH and sodium chloride concentration on thermal stability of antimicrobial peptide P34 was evaluated under different time–temperature conditions by a 22 factorial design experiment. At sterilization conditions (121 °C for 20 min), maximum retention (36%) was obtained at pH between 5.5 and 8.5 and sodium chloride concentration between 0.4 and 0.75 mol/l. For boiling conditions (100 °C for 20 min), antimicrobial activity was about 100% combining pH between 6.0 and 8.0 and salt concentration in the range of 0.65 to 1 mol/l. At low temperature pasteurization conditions (30 min at 65 °C), antimicrobial activity was not affected within the pH range from 5.0 to 8.0. For the three time–temperature conditions tested, the antimicrobial activity was minimal at more acidic or alkaline pH. Sodium chloride concentration of 0.65 mol/l increased thermostability of the peptide P34. Combination of sodium chloride and slight alkaline pH may increase the stability of peptide P34, which is essential to the proper utilization of bacteriocins in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asaduzzaman, S. K., & Sonomoto, K. (2009). Lantibiotics: diverse activities and unique modes of action. Journal of Bioscience and Bioengineering, 107, 475–487.

    Article  CAS  Google Scholar 

  • Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing, 46, 584–602.

    Article  CAS  Google Scholar 

  • Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21, 53–58.

    Article  CAS  Google Scholar 

  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.

    Article  CAS  Google Scholar 

  • Deegan, L. H., Cotter, P. D., Hill, C., & Ross, R. P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.

    Article  CAS  Google Scholar 

  • Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin nisin. Antonie Van Leeuwenhoek, 69, 193–202.

    Article  CAS  Google Scholar 

  • Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.

    Article  Google Scholar 

  • Gao, Y.-L., Ju, X.-R., & Jiang, H.-H. (2006). Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. Journal of Food Engineering, 77, 672–679.

    Article  Google Scholar 

  • Kwok, K. C., Liang, K. C., & Niranjan, K. (2002). Mathematical modelling of the heat inactivation of trypsin inhibitors in soymilk at 121–154 degrees C. Journal of the Science of Food and Agriculture, 82(3), 243–247.

    Article  CAS  Google Scholar 

  • Leães, F. L., Sant’Anna, V., Vannin, N. G., & Brandelli, A. (2011). Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11. Food and Bioprocess Technology, 4(5), 822–828. doi:10.1007/s11947.010.0410.9.

    Article  Google Scholar 

  • Makki, F., & Durance, T. D. (1996). Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer. Food Research International, 29, 635–645.

    Article  CAS  Google Scholar 

  • Marlow, G. E., Perkyns, J. S., & Pettitt, B. M. (1993). Salt effects in peptide solutions: theory and simulations. Chemical Reviews, 93, 2503–2521.

    Article  CAS  Google Scholar 

  • McAuliffe, O., Ryan, M. P., Ross, R. P., Hill, C., Breeuwer, P., & Abee, T. (1998). Lacticin 3147, a broad spectrum bacteriocin which selectively dissipates the membrane potential. Applied and Environmental Microbiology, 64, 439–445.

    CAS  Google Scholar 

  • Montville, T. J., & Matthews, K. R. (2008). Food microbiology: an introduction (2nd ed.). Washington: ASM Press.

    Google Scholar 

  • Motta, A. S., & Brandelli, A. (2002). Characterization of an antimicrobial peptide produced by Brevibacterium linens. Journal of Applied Microbiology, 92, 63–70.

    Article  CAS  Google Scholar 

  • Motta, A. S., & Brandelli, A. (2008). Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World Journal of Microbiology and Biotechnology, 24, 641–646.

    Article  CAS  Google Scholar 

  • Motta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon basin. Brazilian Journal of Microbiology, 35, 307–310.

    Article  CAS  Google Scholar 

  • Motta, A. S., Cannavan, F. S., Tsai, S. M., & Brandelli, A. (2007a). Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Archives of Microbiology, 188, 367–375.

    Article  CAS  Google Scholar 

  • Motta, A. S., Lorenzini, D. M., & Brandelli, A. (2007b). Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the Amazon basin. Current Microbiology, 54, 282–286.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, R. C. (2002). Response surface methodology: process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  • Naim, F., Zareifard, M. R., Zhu, S., Huizing, R. H., Grabowski, S., & Marcotte, M. (2008). Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Food Microbiology, 25, 936–941.

    Article  CAS  Google Scholar 

  • Pedersen, P. B., Bjørnvad, M. E., Rasmussen, M. D., & Petersen, J. N. (2002). Cytotoxic potential of industrial strains of Bacillus spp. Regulatory Toxicology and Pharmacology, 36, 155–161.

    Article  CAS  Google Scholar 

  • Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60, 21–29.

    Article  Google Scholar 

  • Sant’Anna, V., Utpott, M., Cladera-Olivera, F., & Brandelli, A. (2010). Kinetic modeling of the thermal inactivation of bacteriocin-like inhibitory substance P34. Journal of Agricultural and Food Chemistry, 58, 3147–3152.

    Article  Google Scholar 

  • Sant’Anna, V., Utpott, M., Cladera-Olivera, F., & Brandelli, A. (2011a). Influence of pH and sodium chloride on kinetics of thermal inactivation of the bacteriocin-like substance P34. Journal of Applied Microbiology, 110, 156–162.

    Article  Google Scholar 

  • Sant’Anna, V., Malheiros, O. S., & Brandelli, A. (2011b). Lipossome encapsulation protects bacteriocin-like substance P34 against Maillard reaction products. Food Research International, 44, 326–330.

    Article  Google Scholar 

  • Sobrino-López, A., & Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal, 18, 329–343.

    Article  Google Scholar 

  • Wandling, L. R., Sheldon, B. W., & Foegeding, P. M. (1999). Nisin in milk sensitizes Bacillus spores to heat and prevents recovery of survivors. Journal of Food Protection, 62, 492–498.

    CAS  Google Scholar 

  • Wirjantoro, T. I., Lewis, M. J., Grandison, A. S., Williams, G. C., & Delves-Broughton, J. (2001). The effect of nisin on the keeping quality of reduced heat-treated milks. Journal of Food Protection, 64, 213–219.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. M. Utpott received a fellowship from Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sant’Anna, V., Utpott, M., Cladera-Olivera, F. et al. Antimicrobial Activity of Peptide P34 During Thermal Processing. Food Bioprocess Technol 6, 73–79 (2013). https://doi.org/10.1007/s11947-011-0633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0633-4

Keywords

Navigation