Skip to main content

Advertisement

Log in

The Effect of the Electric Field on Lag Phase, β-Galactosidase Production and Plasmid Stability of a Recombinant Saccharomyces cerevisiae Strain Growing on Lactose

Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ethanol and β-galactosidase production from cheese whey may significantly contribute to minimise environmental problems while producing value from low-cost raw materials. In this work, the recombinant Saccharomyces cerevisiae NCYC869-A3/pVK1.1 flocculent strain expressing the lacA gene (coding for β-galactosidase) of Aspergillus niger under ADHI promoter and terminator was used. This strain shows high ethanol and β-galactosidase productivities when grown on lactose. Batch cultures were performed using SSlactose medium with 50 g L−1 lactose in a 2-L bioreactor under aerobic and microaerophilic conditions. Temperature was maintained at 30 °C and pH 4.0. In order to determine the effect of an electric field in the fermentation profile, titanium electrodes were placed inside the bioreactor and different electric field values (from 0.5 to 2 V cm−1) were applied. For all experiments, β-galactosidase activity, biomass, protein, lactose, glucose, galactose and ethanol concentrations were measured. Finally, lag phase duration and specific growth rate were calculated. Significant changes in lag phase duration and biomass yield were found when using 2 V cm−1. Results show that the electric field enhances the early stages of fermentation kinetics, thus indicating that its application may improve industrial fermentations’ productivity. The increase in electric field intensity led to plasmid instability thus decreasing β-galactosidase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araújo, O. Q. F., Coelho, M. A. Z., Margarit, I. C. P., Vaz, C. A., & Rocha-Leão, M. H. M. (2004). Electrical stimulation of Saccharomyces cerevisiae cultures. Brazilian Journal of Microbiology, 35(1–2), 97–103.

    Article  Google Scholar 

  • Bailey, M. J., & Linko, M. (1990). Production of beta-galactosidase by Aspergillus oryzae in submerged bioreactor cultivation. Journal of Biotechnology, 16(1–2), 57–66.

    Article  CAS  Google Scholar 

  • Bartlett, P. N., Pletcher, D., & Zeng, J. (1997). Approaches to the integration of electrochemistry and biotechnology. Journal of the Electrochemical Society, 144(11), 3705–3710.

    Article  CAS  Google Scholar 

  • Baysal, A. H., & Icier, F. (2010). Inactivation kinetics of Alicyclobacillus acidoterrestris spores in orange juice by ohmic heating: Effects of voltage gradient and temperature on inactivation. Journal of Food Protection, 73(2), 299–304.

    Google Scholar 

  • Castro, I., Macedo, B., Teixeira, J. A., & Vicente, A. A. (2004). The effect of electric field on important food-processing enzymes: Comparison of inactivation kinetics under conventional and ohmic heating. Journal of Food Science, 69(9), C696–C701.

    Article  CAS  Google Scholar 

  • Cho, H. Y., Yousef, A. E., & Sastry, S. K. (1996). Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnology and Bioengineering, 49(3), 334–340.

    Article  CAS  Google Scholar 

  • Domingues, L., Lima, N., & Teixeira, J. A. (2005). Aspergillus niger beta-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3–4), 1151–1154.

    Article  CAS  Google Scholar 

  • Domingues, L., Oliveira, C., Castro, I., Lima, N., & Teixeira, J. A. (2004). Production of beta-galactosidase from recombinant Saccharomyces cerevisiae grown on lactose. Journal of Chemical Technology and Biotechnology, 79(8), 809–815.

    Article  CAS  Google Scholar 

  • Domingues, L., Onnela, M. L., Teixeira, J. A., Lima, N., & Penttilä, M. (2000). Construction of a flocculent brewer's yeast strain secreting Aspergillus niger beta-galactosidase. Applied Microbiology and Biotechnology, 54(1), 97–103.

    Article  CAS  Google Scholar 

  • Domingues, L., Teixeira, J. A., Penttilä, M., & Lima, N. (2002). Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger beta-galactosidase. Applied Microbiology and Biotechnology, 58(5), 645–650.

    Article  CAS  Google Scholar 

  • Futcher, A. B., & Cox, B. S. (1984). Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. Journal of Bacteriology, 157(1), 283–290.

    CAS  Google Scholar 

  • Icier, F., & Bozkurt, H. (2011). Ohmic heating of liquid whole egg: Rheological behaviour and fluid dynamics. Food and Bioprocess Technology, in press. doi:10.1007/s11947-009-0229-4.

  • Kumar, V., Ramakrishnan, S., Teeri, T. T., Knowles, J. K., & Hartley, B. S. (1992). Saccharomyces cerevisiae cells secreting an Aspergillus niger β-galactosidase grow on whey permeate. Biotechnology, 10, 82–85.

    Article  CAS  Google Scholar 

  • Loghavi, L., Sastry, S. K., & Yousef, A. E. (2007). Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 98(4), 872–881.

    Article  CAS  Google Scholar 

  • Loghavi, L., Sastry, S. K., & Yousef, A. E. (2008). Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnology Progress, 24(1), 148–153.

    Article  CAS  Google Scholar 

  • Loghavi, L., Sastry, S. K., & Yousef, A. E. (2009). Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology Progress, 25(1), 85–94.

    Article  CAS  Google Scholar 

  • Ludwig, D. L., & Bruschi, C. V. (1991). The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector. Plasmid, 25(2), 81–95.

    Article  CAS  Google Scholar 

  • Machado, L. F., Pereira, R. N., Martins, R. C., Teixeira, J. A., & Vicente, A. A. (2010). Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 96(4), 520–527.

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Oliveira, C., Guimarães, P. M., & Domingues, L. (2011). Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnology Advances, in press. doi:10.1016/j.biotechadv.2011.03.008.

  • Oliveira, C., Teixeira, J. A., Lima, N., Da Silva, N. A., & Domingues, L. (2007). Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger beta-galactosidase production. Journal of Bioscience and Bioengineering, 103(4), 318–324.

    Article  CAS  Google Scholar 

  • Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of beta-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81(4), 530–543.

    Article  CAS  Google Scholar 

  • Pereira, R., Martins, J., Mateus, C., Teixeira, J. A., & Vicente, A. A. (2007). Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating. Chemical Papers, 61(2), 121–126.

    Article  CAS  Google Scholar 

  • Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43, 1936–1943.

    Article  Google Scholar 

  • Rowley, B. A. (1972). Electrical current effects on Escherichia coli growth rates. Proceedings of the Society for Experimental Biology and Medicine, 139(3), 929–934.

    Article  CAS  Google Scholar 

  • Stacey, M., Stickley, J., Fox, P., Statler, V., Schoenbach, K., Beebe, S. J., et al. (2003). Differential effects in cells exposed to ultra-short, high intensity electric fields: Cell survival, DNA damage, and cell cycle analysis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 542(1–2), 65–75.

    CAS  Google Scholar 

  • Sun, H. X., Kawamura, S., Himoto, J. I., Itoh, K., Wada, T., & Kimura, T. (2008). Effects of ohmic heating on microbial counts and denaturation of proteins in milk. Food Science and Technology Research, 14(2), 117–123.

    Article  CAS  Google Scholar 

  • Wei, P., Li, Z., Lin, Y., He, P., & Jiang, N. (2007). Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze–thaw treatment. Biotechnology Letters, 29(10), 1501–1508.

    Article  CAS  Google Scholar 

  • Yildiz, H., & Baysal, T. (2006). Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. Journal of Food Engineering, 75(3), 327–332.

    Article  CAS  Google Scholar 

  • Zell, M., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2011). Quality evaluation of an ohmically cooked ham product. Food and Bioprocess Technology, in press. doi:10.1007/s11947-009-0281-0.

Download references

Acknowledgements

The authors gratefully acknowledge Fundação para a Ciência e a Tecnologia (Portugal) for the scholarships SFRH/BD/11230/2002 and SFRH/BDP/63831/2009 granted to authors I. Castro and C. Oliveira, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António A. Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, I., Oliveira, C., Domingues, L. et al. The Effect of the Electric Field on Lag Phase, β-Galactosidase Production and Plasmid Stability of a Recombinant Saccharomyces cerevisiae Strain Growing on Lactose. Food Bioprocess Technol 5, 3014–3020 (2012). https://doi.org/10.1007/s11947-011-0609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0609-4

Keywords

Navigation