Skip to main content
Log in

Technological Aspects of β-Carotene Production

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

β-carotene is the main source of pro-vitamin A and is widely used as a food colorant, with a global market estimated to surpass USD 280 million in 2015. The majority of the β-carotene commercialized in the world is obtained by chemical synthesis from β-ionone. Alternatively, the production of β-carotene can be reached on a biotechnological basis, using filamentous fungi, bacteria, microalgae, and yeasts as producers, or even by extraction from vegetable sources, such as oil palm (Elaeis guineensis) and buriti (Mauritia vinifera). The present review is focused on the current technologies for β-carotene production and presents an overview of new tendencies regarding the carotenoids extraction from microbial and vegetal feedstocks, as well as processes for their concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksu, Z., & Eren, A. T. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry, 40, 2985–2991.

    Article  CAS  Google Scholar 

  • Al-Babili, S., & Beyer, P. (2005). Golden rice—five years on the road—five years to go? Trends in Plant Science, 10(12), 565–573.

    Article  CAS  Google Scholar 

  • ALICEWEB (2010) β-carotene importations and exportations in Brazil. Available at http://aliceweb.desenvolvimento.gov.br/. Accessed in 20 January 2011.

  • Batistella, C. B., & Maciel, M. R. W. (1998). Recovery of carotenoids from palm oil by molecular distillation. Computers & Chemical Engineering, 22, S53–S60.

    Article  CAS  Google Scholar 

  • Bhosale, P., & Bernstein, P. S. (2004). β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. Journal of Industrial Microbiology & Biotechnology, 31, 565–571.

    Article  CAS  Google Scholar 

  • Böhme, K., Richter, C., & Pätz, R. (2006). New insights into mechanisms of growth and β-carotene production in Blakeslea trispora. Biotechnology Journal, 1, 1080–1084.

    Article  Google Scholar 

  • Britton, G., Liaaen-Jensen, S., & Pfander, H. (1995). Carotenoids (Vol. 1A: Isolation and Analysis). Stuttgart, Germany: Birkhaüser Verlag Basel.

    Google Scholar 

  • Britton, G., Liaaen-Jensen, S., & Pfander, H. (1996). Carotenoids (Vol. 2: Synthesis). Stuttgart, Germany: Birkhaüser Verlag Basel.

    Google Scholar 

  • Buzzini, P., Martini, A., Gaetani, M., Turchetti, B., Pagnoni, U. M., & Davoli, P. (2005). Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme and Microbial Technology, 36, 687–692.

    Article  CAS  Google Scholar 

  • Buzzini, P., Innocenti, M., Turchetti, B., Libkind, D., Van Broock, M., & Mulinacci, N. (2007). Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Canadian Journal of Microbiology, 53, 1021–1031.

    Article  Google Scholar 

  • Choudhari, S., & Singhal, R. (2008). Media optimization for the production of β-carotene by Blakeslea trispora: A statistical approach. Bioresource Technology, 99, 722–730.

    Article  CAS  Google Scholar 

  • Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology, 99, 3166–3173.

    Article  CAS  Google Scholar 

  • Chuang, M. H., & Brunner, G. (2006). Concentration of minor components in crude oil palm. Journal of Supercritical Fluids, 37, 151–156.

    Article  CAS  Google Scholar 

  • Cocero, M. J., González, S., Pérez, S., & Alonso, E. (2000). Supercritical extraction of unsaturated products. Degradation of β-carotene in supercritical extraction processes. Journal of Supercritical Fluids, 19, 39–44.

    Article  CAS  Google Scholar 

  • Davarnejad, R., Kassim, K. M., Zainal, A., & Sata, S. A. (2008). Supercritical fluid extraction of β-carotene from crude palm oil using CO2. Journal of Food Engineering, 89, 472–478.

    Article  CAS  Google Scholar 

  • De Rosso, V. V., & Mercadante, A. Z. (2005). Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Research International, 38, 1073–1077.

    Article  Google Scholar 

  • De Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55, 5062–5072.

    Article  Google Scholar 

  • Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoids production: current state and perspectives. Applied Microbiology and Biotechnology, 74, 1163–1174.

    Article  CAS  Google Scholar 

  • Della Penna, D., & Pogson, B. J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annual Review of Plant Biology, 57, 711–738.

    Article  CAS  Google Scholar 

  • Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350.

    Article  Google Scholar 

  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., et al. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389–406.

    Article  Google Scholar 

  • FAO (2008) Online Edition: “Combined Compendium of Food Additive Specifications”. Additive Carotene (vegetable). Available at http://www.fao.org/ag/agn/jecfa-additives/details.html?id=699. Accessed in 20 January 2011.

  • Fernandez, X. E., Shier, N. W., & Watkins, B. A. (2000). Effect of alkali saponification, enzymatic hydrolysis and storage time on the total carotenoid concentration of Costa Rican crude palm oil. Journal of Food Composition and Analysis, 13, 179–187.

    Article  Google Scholar 

  • França, L. F., & Meireles, M. A. A. (1997). Extraction of oil from pressed palm oil (Elaeis guineensis) fibers using supercritical CO2. Ciência e Tecnologia de Alimentos, 17(4), 384–388.

    Article  Google Scholar 

  • França, L. F., Reber, G., Meireles, M. A. A., Machado, N. T., & Brunner, G. (1999). Supercritical extraction of carotenoids and lipids from buriti (Mauritia flexuosa), a fruit from the Amazon region. Journal of Supercritical Fluids, 14, 247–256.

    Article  Google Scholar 

  • Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43, 228–265.

    Article  CAS  Google Scholar 

  • Frengova, G. I., & Beshkova, D. M. (2009). Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. Journal of Industrial Microbiology & Biotechnology, 36, 163–180.

    Article  CAS  Google Scholar 

  • García-González, M., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunalliela salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115, 81–90.

    Article  Google Scholar 

  • Giuliano, G., Aquilani, R., & Dharmapuri, S. (2000). Metabolic engineering of plant carotenoids. Trends in Plant Science, 5(10), 406–409.

    Article  CAS  Google Scholar 

  • Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., Sowinski, S. G., et al. (2008). Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319, 330–333.

    Article  CAS  Google Scholar 

  • Hejazi, M. A., & Wijffels, R. H. (2003). Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomolecular Engineering, 20, 171–175.

    Article  CAS  Google Scholar 

  • Ishida, B. K., & Chapman, M. H. (2009). Carotenoid extraction from plants using a novel, environmentally friendly solvent. Journal of Agricultural and Food Chemistry, 57(3), 1051–1059.

    Article  CAS  Google Scholar 

  • Isler, O. (1971). Carotenoids. Stuttgart, Germany: Birkhaüser Verlag Basel.

    Google Scholar 

  • Jaime, L., Mendiola, J. A., Ibáñez, E., Martin-Álvarez, P. J., Cifuentes, A., Reglero, G., et al. (2007). β-Carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement. Journal of Agricultural and Food Chemistry, 55, 10585–10590.

    Article  CAS  Google Scholar 

  • Jo, HH., Kim, NS., Hong, JH., Jung, HK., Park, CD., & Kim DI (2008) A high efficient method for extracting beta-carotene from persimmon skin. Korean Patent No 100853313 (B1).

  • Kaiser, P., Surmann, P., Vallentin, G., & Fuhrmann, H. (2007). A small-scale method for quantitation of carotenoids in bacteria and yeasts. Journal of Microbiological Methods, 70, 142–149.

    Article  CAS  Google Scholar 

  • Kim, S. W., Kim, J. B., Jung, W. H., Kim, J. H., & Jung, J. K. (2006). Over-production of β-carotene from metabolically engineered Escherichia coli. Biotechnology Letters, 28, 897–904.

    Article  CAS  Google Scholar 

  • Kuzina, V., & Cerdá-Olmedo, E. (2007). Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces. Applied Microbiology and Biotechnology, 76, 991–999.

    Article  CAS  Google Scholar 

  • Léon, R., Martín, M., Vigara, J., Vilchez, C., & Vega, J. M. (2003). Microalgae mediated photoproduction of β-carotene in aqueous-organic two phase systems. Biomolecular Engineering, 20, 177–182.

    Article  Google Scholar 

  • Lietz, G., & Henry, C. J. K. (1997). A modified method to minimise losses of carotenoids and tocopherols during HPLC analysis of red palm oil. Food Chemistry, 60(1), 109–117.

    Article  CAS  Google Scholar 

  • Macías-Sánchez, M. D., Serrano, C. M., Rodríguez, M. R., & De La Ossa, E. M. (2009). Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chemical Engineering Journal, 150, 104–113.

    Article  Google Scholar 

  • Maldonade, I. R., Rodríguez-Amaya, D. B., & Scamparini, A. R. P. (2008). Carotenoids of yeasts isolated from the Brazilian ecosystem. Food Chemistry, 107, 145–150.

    Article  CAS  Google Scholar 

  • Malisorn, C., & Suntornsuk, W. (2008). Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresource Technology, 99, 2281–2287.

    Article  CAS  Google Scholar 

  • Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. Journal of Agricultural and Food Chemistry, 56, 2668–2675.

    Article  CAS  Google Scholar 

  • Marinho, H. A., & Castro, J. S. (2003). Carotenóides e valor de pró-vitamina A em frutos da região amazônica: pajurá, piquiá, tucumã e umari. Brazil: Anais do XVII Congresso Brasileiro de Fruticultura.

    Google Scholar 

  • Mehta, B. J., Salgado, L. M., Bejarano, E. R., & Cerdá-Olmedo, E. (1997). New mutants of Phycomyces blaskeleeanus for β-carotene production. Applied and Environmental Microbiology, 63(9), 3657–3661.

    CAS  Google Scholar 

  • Mogedas, B., Casal, C., Forján, E., & Vilchez, C. (2009). β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. Journal of Bioscience and Bioengineering, 108(1), 47–51.

    Article  CAS  Google Scholar 

  • Mojaat, M., Foucault, A., Pruvost, J., & Legrand, J. (2008). Optimal selection of organic solvents for biocompatible extraction of β-carotene from Dunaliella salina. Journal of Biotechnology, 133(4), 433–441.

    CAS  Google Scholar 

  • Monks, L., Tiggamann, L., Mazuti, M. A., Oliveira, V. J., & Valduga, E. (2011). Assessment of carotenoids recovery through cell rupture of Sporidiobolus salmonicolor CBS 2636 Using Compressed Fluids. Food and Bioprocess Technology. doi:10.1007/s11947-010-0493-3.

    Google Scholar 

  • Nanou, K., Roukas, T., & Kotzekidou, P. (2007). Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Applied Microbiology and Biotechnology, 74, 447–453.

    Article  CAS  Google Scholar 

  • NATURALPRODUCTSINSIDER (2010) Carotenoids market on the rise. Available at http://www.naturalproductsinsider.com/news/2008/03/carotenoid-market-on-the-rise.aspx. Accessed in 20 January 2011.

  • Nestel, P., Bouis, H. E., Meenakshi, J. V., & Pfeiffer, W. (2006). Biofortification of staple food crops. The Journal of Nutrition, 136, 1064–1067.

    CAS  Google Scholar 

  • Niizu, P. Y. (2003). Fontes de carotenóides importantes para saúde human Dissertação (Mestrado), Ciência dos Alimentos, Faculdade de Engenharia de Alimentos. Campinas: UNICAMP.

    Google Scholar 

  • Ooi, C. K., Choo, Y. M., Yap, S. C., Basiron, Y., & Ong, A. S. H. (1994). Recovery of carotenoids from palm oil. Journal of American Oil Chemists’ Society, 71(4), 423–426.

    Article  CAS  Google Scholar 

  • Packer, L., Hiramatsu, M., & Yoshikawa, T. (1999). Antioxidants food supplements in human health. Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  • Palozza, P., Serini, S., Di Nicuolo, F., Piccioni, E., & Calviello, G. (2003). Prooxidant effects of β-carotene in cultured cells. Molecular Aspects of Medicine, 24, 353–362.

    Article  CAS  Google Scholar 

  • Paust, J. (1994). Herstellung und anwendung von carotinoiden. Chimia, 48, 494–498.

    Google Scholar 

  • Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74, 517–523.

    Article  CAS  Google Scholar 

  • Ribeiro BD (2008) Aplicação de Tecnologia Enzimática na Obtenção de β-Caroteno a partir de Óleo de Buriti (Mauritia vinifera). Dissertação (Mestrado), Programa de Pós-Graduação de Tecnologia de Processos Químicos e Bioquímicos, EQ, UFRJ, Brazil.

  • Rodríguez-Amaya, D. B. (2001). A guide to carotenoid analysis in food. Washington, USA: ILSI.

    Google Scholar 

  • Rodríguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. Journal of Food Composition and Analysis, 21, 445–463.

    Article  Google Scholar 

  • Rodríguez-Saíz, M., Sánchez-Porro, C., De La Fuente, J. L., Mellado, E., & Barredo, J. L. (2007). Engineering the halophilic bacterium Halomonas elongata to produce β-carotene. Applied Microbiology and Biotechnology, 77, 637–643.

    Article  Google Scholar 

  • Rucker, R. B., Suttie, J. W., McCormick, D. B., & Machlin, L. J. (2001). Handbook of vitamins (3rd ed.). Nova York, USA: Marcel Dekker.

    Google Scholar 

  • Silva, C., Cabral, J. M. S., & Van Keulen, F. (2004). Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnology Letters, 26, 257–262.

    Article  CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  Google Scholar 

  • Tafreshi, A. H., & Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology, 107, 14–35.

    Article  CAS  Google Scholar 

  • Tinoi, J., Rakariyatham, N., & Deming, R. L. (2005). Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochemistry, 40, 2551–2557.

    Article  CAS  Google Scholar 

  • Valduga, E., Tatsch, P. O., Tiggemann, L., Treichel, H., Toniazzo, G., Zeni, J., et al. (2009a). Produção de carotenóides: Microrganismos como fonte de pigmentos naturais. Quimica Nova, 32(9), 2429–2436.

    Article  CAS  Google Scholar 

  • Valduga, E., Valério, A., Treichel, H., Fúrigo, A., Jr., & Di Luccio, M. (2009b). Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media. Applied Biochemistry and Biotechnology, 157, 61–69.

    Article  CAS  Google Scholar 

  • Valduga, E., Valério, A., Tatsch, P. O., Treichel, H., Fúrigo, A., Jr., & Di Luccio, M. (2009c). Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor (CBS 2636). Food and Bioprocess Technology, 2, 234–238.

    Article  CAS  Google Scholar 

  • Valduga, E., Valério, A., Treichel, H., Fúrigo, A., Jr., & Di Luccio, M. (2009d). Optimization of the production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food and Bioprocess Technology, 2, 415–421.

    Article  CAS  Google Scholar 

  • Verwaal, R., Wang, J., Meijnen, J.-P., Visser, H., Sandmann, G., Van der Berg, J. A., et al. (2007). High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 73(13), 4342–4350.

    Article  CAS  Google Scholar 

  • Wang, S.-L., Chen, D.-J., Deng, B.-W., & Wu, X.-Z. (2008). Effects of high hydrostatic pressure on the growth and β-carotene production of Rhodotorula glutinis. Yeast, 25, 251–257.

    Article  CAS  Google Scholar 

  • Xu, F., Yuan, Q.-P., & Zhu, Y. (2007). Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry, 42, 289–293.

    Article  CAS  Google Scholar 

  • Yan, J., Kandianis, C. B., Harjes, C. E., Bai, L., Kim, E.-H., Yang, X., et al. (2010). Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 42(4), 322–329.

    Article  CAS  Google Scholar 

  • Yoon, S.-H., Lee, S.-H., Das, A., Ryu, H.-K., Jang, H.-J., Kim, J.-Y., et al. (2009). Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. Journal of Biotechnology, 140, 218–226.

    Article  CAS  Google Scholar 

  • You, L. L., Baharin, B. S., Quek, S. Y., Abdullah, M. A., & Takagi, S. (2002). Recovery of palm carotene from palm oil and hydrolyzed palm oil by adsorption column chromatography. Journal of Food Lipids, 9, 87–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Dias Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, B.D., Barreto, D.W. & Coelho, M.A.Z. Technological Aspects of β-Carotene Production. Food Bioprocess Technol 4, 693–701 (2011). https://doi.org/10.1007/s11947-011-0545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0545-3

Keywords

Navigation