We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Enzyme Replacement in Neuronal Storage Disorders in the Pediatric Population

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

In the past 15 years, for select lysosomal storage diseases, there has been a shift from symptom management to disease modification in terms of treatment strategy, mainly related to use of enzyme replacement therapy (ERT). Yet the application of ERT is for very few diseases, and while beneficial, ERT does not represent a cure. For some disorders, the advent of ERT has made a dramatic impact, while for others, benefits have been much more modest. Understanding of the long-term effects as well as the appropriate time for initiation of ERT is under exploration in a number of diseases, while the feasibility of ERT is still being established for others. No definite effects of ERT on central nervous system manifestations of lysosomal storage diseases have been observed for any disease to date. New strategies, including intrathecal enzyme replacement, gene therapy and substrate reduction therapy are being developed in animal models and clinical trials, which hopefully will begin a new era of nervous system disease modification in neuronal storage disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281:249–54.

    Article  PubMed  CAS  Google Scholar 

  2. Poupetova H, Ledvinova J, Berna L, Dvorakova L, Kozich V, Elleder M. The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations. J Inherit Metab Dis. 2010;33:387–96.

    Article  PubMed  Google Scholar 

  3. Jurecka A, Żuber Z, Opoka-Winiarska V, Węgrzyn G, Tylki-Szymańska A. Effect of rapid cessation of enzyme replacement therapy: a report of 5 cases and a review of the literature. Mol Genet Metabol. 2012;107:508–12.

    Article  CAS  Google Scholar 

  4. Wegrzyn G, Tylki-Szymanska A, Liberek A, Piotrowska E, Jakobkiewicz-Banecka J, Marucha J, et al. Rapid deterioration of a patient with mucopolysaccharidosis type I during interruption of enzyme replacement therapy. Am J Med Genet A. 2007;143A:1925–7.

    Article  PubMed  Google Scholar 

  5. Ratko TA, Marbella A, Godfrey S, Aronson N. Enzyme-Replacement Therapies for Lysosomal Storage Diseases. In: Technical Briefs, edn No. 12. Edited by Quality AfHRa. Rockville, MD: http://www.ncbi.nlm.nih.gov/books/NBK117214/; 2013.

  6. Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148:671–6.

    Article  PubMed  Google Scholar 

  7. van den Hout HM, Hop W, van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, et al. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112:332–40.

    Article  PubMed  Google Scholar 

  8. Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schoneveld O, Visser P, et al. Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet. 1999;8:2145–53.

    Article  PubMed  CAS  Google Scholar 

  9. Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet. 2000;356:397–8.

    Article  PubMed  Google Scholar 

  10. Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med. 2001;3:132–8.

    PubMed  CAS  Google Scholar 

  11. Van den Hout JM, Kamphoven JH, Winkel LP, Arts WF, De Klerk JB, Loonen MC, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics. 2004;113:e448–57.

    Article  PubMed  Google Scholar 

  12. Klinge L, Straub V, Neudorf U, Schaper J, Bosbach T, Gorlinger K, et al. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord. 2005;15:24–31.

    Article  PubMed  CAS  Google Scholar 

  13. Kishnani PS, Nicolino M, Voit T, Rogers RC, Tsai AC, Waterson J, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr. 2006;149:89–97.

    Article  PubMed  CAS  Google Scholar 

  14. Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68(2):99–109.

    Google Scholar 

  15. Kishnani PS, Corzo D, Leslie ND, Gruskin D, Van der Ploeg A, Clancy JP, et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res. 2009;66:329–35.

    Article  PubMed  CAS  Google Scholar 

  16. Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE. Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis. 2010;33:747–50.

    Article  PubMed  CAS  Google Scholar 

  17. Gelder CM, Capelle CI, Ebbink BJ, Moor-van Nugteren I, Hout JMP, Hakkesteegt MM, et al. Facial-muscle weakness, speech disorders and dysphagia are common in patients with classic infantile Pompe disease treated with enzyme therapy. J Inherit Metab Dis. 2012;35:505–11.

    Article  PubMed  Google Scholar 

  18. Kobayashi H, Shimada Y, Ikegami M, Kawai T, Sakurai K, Urashima T, et al. Prognostic factors for the late onset Pompe disease with enzyme replacement therapy: from our experience of 4 cases including an autopsy case. Mol Genet Metab. 2010;100:14–9.

    Article  PubMed  CAS  Google Scholar 

  19. Rohrbach M, Klein A, Kohli-Wiesner A, Veraguth D, Scheer I, Balmer C, et al. CRIM-negative infantile Pompe disease: 42-month treatment outcome. J Inherit Metab Dis. 2010;33:751–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ebbink BJ, Aarsen FK, van Gelder CM, van den Hout JM, Weisglas-Kuperus N, Jaeken J, et al. Cognitive outcome of patients with classic infantile Pompe disease receiving enzyme therapy. Neurology. 2012;78(19):1512–8.

    Google Scholar 

  21. Nicolino M, Byrne B, Wraith JE, Leslie N, Mandel H, Freyer DR, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med. 2009;11:210–9.

    Article  PubMed  CAS  Google Scholar 

  22. Hamdan MA, Almalik MH, Mirghani HM. Early administration of enzyme replacement therapy for Pompe disease: short-term follow-up results. J Inherit Metab Dis. 2008;31 Suppl 2:S431–6.

    Article  PubMed  Google Scholar 

  23. Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.

    Article  PubMed  CAS  Google Scholar 

  24. Mendelsohn NJ, Messinger YH, Rosenberg AS, Kishnani PS. Elimination of antibodies to recombinant enzyme in Pompe's disease. N Engl J Med. 2009;360:194–5.

    Article  PubMed  CAS  Google Scholar 

  25. Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14:135–42.

    Article  PubMed  CAS  Google Scholar 

  26. Banugaria SG, Prater SN, Ng YK, Kobori JA, Finkel RS, Ladda RL, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med. 2011;13:729–36.

    Article  PubMed  CAS  Google Scholar 

  27. Banugaria SG, Patel TT, Mackey J, Das S, Amalfitano A, Rosenberg AS, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metabol. 2012;105:677–80.

    Article  CAS  Google Scholar 

  28. Angelini C, Semplicini C, Ravaglia S, Moggio M, Comi GP, Musumeci O, et al. New motor outcome function measures in evaluation of Late-Onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve. 2012;45:831–4.

    Article  PubMed  Google Scholar 

  29. Bembi B, Pisa FE, Confalonieri M, Ciana G, Fiumara A, Parini R, et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis. 2010;33:727–35.

    Article  PubMed  CAS  Google Scholar 

  30. van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ, et al. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med. 2010;362:1396–406.

    Article  PubMed  Google Scholar 

  31. van der Ploeg AT, Barohn R, Carlson L, Charrow J, Clemens PR, Hopkin RJ, et al. Open-label extension study following the Late-Onset Treatment Study (LOTS) of alglucosidase alfa. Mol Genet Metabol. 2012;107:456–61.

    Article  Google Scholar 

  32. Angelini C, Semplicini C, Ravaglia S, Bembi B, Servidei S, Pegoraro E, et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol. 2012;259:952–8.

    Article  PubMed  CAS  Google Scholar 

  33. van Capelle CI, Winkel LP, Hagemans ML, Shapira SK, Arts WF, van Doorn PA, et al. Eight years experience with enzyme replacement therapy in two children and one adult with Pompe disease. Neuromuscul Disord. 2008;18:447–52.

    Article  PubMed  Google Scholar 

  34. Winkel LP, Van den Hout JM, Kamphoven JH, Disseldorp JA, Remmerswaal M, Arts WF, et al. Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up. Ann Neurol. 2004;55:495–502.

    Article  PubMed  CAS  Google Scholar 

  35. van Capelle CI, van der Beek NA, Hagemans ML, Arts WF, Hop WC, Lee P, et al. Effect of enzyme therapy in juvenile patients with Pompe disease: a three-year open-label study. Neuromuscul Disord. 2010;20:775–82.

    Article  PubMed  Google Scholar 

  36. Goker-Alpan O, Wiggs EA, Eblan MJ, Benko W, Ziegler SG, Sidransky E, et al. Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. J Pediatr. 2008;153:89–94.

    Article  PubMed  Google Scholar 

  37. Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, et al. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology. 2010;20:24–32.

    Article  PubMed  CAS  Google Scholar 

  38. Andersson H, Kaplan P, Kacena K, Yee J. Eight-year clinical outcomes of long-term enzyme replacement therapy for 884 children with Gaucher disease type 1. Pediatrics. 2008;122:1182–90.

    Article  PubMed  Google Scholar 

  39. Gonzalez DE, Turkia HB, Lukina EA, Kisinovsky I, Dridi MF, Elstein D, et al. Enzyme replacement therapy with velaglucerase alfa in Gaucher disease: results from a randomized, double-blind, multinational, Phase 3 study. Am J Hematol. 2013;88:166–71.

    Article  PubMed  CAS  Google Scholar 

  40. Weinreb NJ, Charrow J, Andersson HC, Kaplan P, Kolodny EH, Mistry P, et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med. 2002;113:112–9.

    Article  PubMed  CAS  Google Scholar 

  41. Ben Turkia H, Gonzalez DE, Barton NW, Zimran A, Kabra M, Lukina EA, et al. Velaglucerase alfa enzyme replacement therapy compared with imiglucerase in patients with Gaucher disease. Am J Hematol. 2013;88:179–84.

    Article  PubMed  CAS  Google Scholar 

  42. Zimran A, Pastores GM, Tylki-Szymanska A, Hughes DA, Elstein D, Mardach R, et al. Safety and efficacy of velaglucerase alfa in Gaucher disease type 1 patients previously treated with imiglucerase. Am J Hematol. 2013;88:172–8.

    Article  PubMed  CAS  Google Scholar 

  43. Elstein D, Altarescu G, Maayan H, Phillips M, Abrahamov A, Hadas-Halpern I, et al. Booster-effect with velaglucerase alfa in patients with Gaucher disease switched from long-term imiglucerase therapy: early Access Program results from Jerusalem. Blood Cells Mol Dis. 2012;48:45–50.

    Article  PubMed  CAS  Google Scholar 

  44. Kaplan P, Baris H, De Meirleir L, Di Rocco M, El-Beshlawy A, Huemer M, et al. Revised recommendations for the management of Gaucher disease in children. Eur J Pediatr. 2013;172:447–58.

    Article  PubMed  CAS  Google Scholar 

  45. Bove KE, Daugherty C, Grabowski GA. Pathological findings in Gaucher disease type 2 patients following enzyme therapy. Hum Pathol. 1995;26:1040–5.

    Article  PubMed  CAS  Google Scholar 

  46. Prows CA, Sanchez N, Daugherty C, Grabowski GA. Gaucher disease: enzyme therapy in the acute neuronopathic variant. Am J Med Genet. 1997;71:16–21.

    Article  PubMed  CAS  Google Scholar 

  47. Schiffmann R, Heyes MP, Aerts JM, Dambrosia JM, Patterson MC, DeGraba T, et al. Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher's disease. Ann Neurol. 1997;42:613–21.

    Article  PubMed  CAS  Google Scholar 

  48. Altarescu G, Hill S, Wiggs E, Jeffries N, Kreps C, Parker CC, et al. The efficacy of enzyme replacement therapy in patients with chronic neuronopathic Gaucher's disease. J Pediatr. 2001;138:539–47.

    Article  PubMed  CAS  Google Scholar 

  49. Dobbelaere D, Sukno S, Defoort-Dhellemmes S, Lamblin MD, Largillière C. Neurological outcome of a patient with Gaucher disease type III treated by enzymatic replacement therapy. J Inherit Metab Dis. 1998;21:74–6.

    Article  PubMed  CAS  Google Scholar 

  50. Kraoua I, Sedel F, Caillaud C, Froissart R, Stirnemann J, Chaurand G, et al. A French experience of type 3 Gaucher disease: phenotypic diversity and neurological outcome of 10 patients. Brain Dev. 2011;33:131–9.

    Article  PubMed  Google Scholar 

  51. Erikson A, Forsberg H, Nilsson M, Astrom M, Mansson JE. Ten years' experience of enzyme infusion therapy of Norrbottnian (type 3) Gaucher disease. Acta Paediatr. 2006;95:312–7.

    Article  PubMed  Google Scholar 

  52. Tylki-szymańska A, Czartoryska B. Enzyme replacement therapy in type III Gaucher disease. J Inherit Metab Dis. 1999;22:203–4.

    Article  PubMed  Google Scholar 

  53. Vellodi A, Tylki-Szymanska A, Davies EH, Kolodny E, Bembi B, Collin-Histed T, et al. Management of neuronopathic Gaucher disease: revised recommendations. J Inherit Metab Dis. 2009;32:660–4.

    Article  PubMed  CAS  Google Scholar 

  54. Alfadhel M, Sirrs S. Enzyme replacement therapy for Fabry disease: some answers but more questions. Ther Clin Risk Manag. 2011;7:69–82.

    PubMed  CAS  Google Scholar 

  55. Ries M, Clarke JT, Whybra C, Timmons M, Robinson C, Schlaggar BL, et al. Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease. Pediatrics. 2006;118:924–32.

    Article  PubMed  Google Scholar 

  56. Ramaswami U, Wendt S, Pintos-Morell G, Parini R, Whybra C, Leon Leal JA, et al. Enzyme replacement therapy with agalsidase alfa in children with Fabry disease. Acta Paediatr. 2007;96:122–7.

    Article  PubMed  CAS  Google Scholar 

  57. Schiffmann R, Martin RA, Reimschisel T, Johnson K, Castaneda V, Lien YH, et al. Four-year prospective clinical trial of agalsidase alfa in children with Fabry disease. J Pediatr. 2010;156:832–7. 837 e831.

    Article  PubMed  CAS  Google Scholar 

  58. Ramaswami U, Parini R, Pintos-Morell G, Kalkum G, Kampmann C, Beck M, on behalf of the FOS Investigators. Fabry disease in children and response to enzyme replacement therapy: results from the Fabry Outcome Survey. Clin Genet. 2012;81:485–90.

    Google Scholar 

  59. Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med. 2007;146:77–86.

    Article  PubMed  Google Scholar 

  60. Wraith JE, Tylki-Szymanska A, Guffon N, Lien YH, Tsimaratos M, Vellodi A, et al. Safety and Efficacy of Enzyme Replacement Therapy with Agalsidase Beta: An International, Open-label Study in Pediatric Patients with Fabry Disease. J Pediatr. 2008;152:563–70.e561.

    Article  PubMed  CAS  Google Scholar 

  61. Vedder AC, Linthorst GE, Houge G, Groener JE, Ormel EE, Bouma BJ, et al. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One. 2007;2:e598.

    Article  PubMed  Google Scholar 

  62. Group LEA. http://www.specialisedservices.nhs.uk/library/23/Fabry_Disease_Standard_Operating_Procedures_Adults_and_Children.pdf. Edited by; Version dated 29 April 2013: Fabry Disease Standard Operating Procedures (Adults and Children).

  63. Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. New Engl J Med. 2001;344:182–8.

    Article  PubMed  CAS  Google Scholar 

  64. Wraith JE, Clarke LA, Beck M, Kolodny EH, Pastores GM, Muenzer J, et al. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase). J Pediatr. 2004;144:581–8.

    Article  PubMed  CAS  Google Scholar 

  65. Wraith JE, Beck M, Lane R, van der Ploeg A, Shapiro E, Xue Y, et al. Enzyme Replacement Therapy in Patients Who Have Mucopolysaccharidosis I and Are Younger Than 5 Years: results of a Multinational Study of Recombinant Human α-l-Iduronidase (Laronidase). Pediatrics. 2007;120:e37–46.

    Article  PubMed  Google Scholar 

  66. Wynn RF, Mercer J, Page J, Carr TF, Jones S, Wraith JE. Use of enzyme replacement therapy (Laronidase) before hematopoietic stem cell transplantation for mucopolysaccharidosis I: experience in 18 patients. J Pediatr. 2009;154:135–9.

    Article  PubMed  CAS  Google Scholar 

  67. Eisengart JB, Rudser KD, Tolar J, Orchard PJ, Kivisto T, Ziegler RS, et al. Enzyme Replacement is Associated with Better Cognitive Outcomes after Transplant in Hurler Syndrome. J Pediatr. 2013;162:375–80.e371.

    Article  PubMed  CAS  Google Scholar 

  68. Scarpa M, Almassy Z, Beck M, Bodamer O, Bruce I, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72.

    Article  PubMed  Google Scholar 

  69. Muenzer J, Wraith JE, Beck M, Giugliani R, Harmatz P, Eng CM, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465–73.

    Google Scholar 

  70. Muenzer J, Gucsavas-Calikoglu M, McCandless SE, Schuetz TJ, Kimura A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90:329–37.

    Article  PubMed  CAS  Google Scholar 

  71. Muenzer J, Beck M, Eng CM, Giugliani R, Harmatz P, Martin R, et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet Med. 2011;13:95–101.

    Article  PubMed  CAS  Google Scholar 

  72. Muenzer J, Beck M, Giugliani R, Suzuki Y, Tylki-Szymanska A, Valayannopoulos V, et al. Idursulfase treatment of Hunter syndrome in children younger than 6 years: results from the Hunter Outcome Survey. Genet Med. 2011;13:102–9.

    Article  PubMed  CAS  Google Scholar 

  73. Hunley TE, Corzo D, Dudek M, Kishnani P, Amalfitano A, Chen YT, et al. Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics. 2004;114:e532–5.

    Article  PubMed  Google Scholar 

  74. Starzyk K, Richards S, Yee J, Smith SE, Kingma W. The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab. 2007;90:157–63.

    Article  PubMed  CAS  Google Scholar 

  75. Brady RO, Murray GJ, Oliver KL, Leitman SF, Sneller MC, Fleisher TA, et al. Management of neutralizing antibody to Ceredase in a patient with type 3 Gaucher disease. Pediatrics. 1997;100:E11.

    Article  PubMed  CAS  Google Scholar 

  76. Wolf DA, Hanson LR, Aronovich EL, Nan Z, Low WC, Frey II WH, et al. Lysosomal enzyme can bypass the blood–brain barrier and reach the CNS following intranasal administration. Mol Genet Metabol. 2012;106:131–4.

    Article  CAS  Google Scholar 

  77. Wang D, El-Amouri SS, Dai M, Kuan CY, Hui DY, Brady RO, et al. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier. Proc Natl Acad Sci U S A. 2013;110:2999–3004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have received funding from the Batten Disease Support and Research Association and the US Food and Drug Administration Office of Orphan Products Grant Program (R01 FD003908) to conduct a clinical trial in juvenile neuronal ceroid lipofuscinosis (NCT01399047). Jonathan W. Mink is principal investigator and Erika Augustine is an investigator on a project on the natural history of Batten disease for the National Institutes of Health as part of the Lysosomal Disease Network (U54NS065768).

Compliance with Ethics Guidelines

Conflict of Interest

Jonathan W. Mink has served on a medical advisory board of the Batten Disease Support and Research Association.

Erika F. Augustine declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika F. Augustine MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustine, E.F., Mink, J.W. Enzyme Replacement in Neuronal Storage Disorders in the Pediatric Population. Curr Treat Options Neurol 15, 634–651 (2013). https://doi.org/10.1007/s11940-013-0256-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-013-0256-3

Keywords

Navigation