Skip to main content
Log in

Hippo/Yap Signaling in Cardiac Development and Regeneration

  • Regenerative Medicine and Stem-cell Therapy (S M Wu and P Hsieh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The heart has historically been considered to be a non-regenerative organ. Recent insights have suggested that cardiomyocytes have a small but measurable ability to regenerate. Moreover, recent work has also shown that manipulating the expression of specific genetic pathways can improve the ability of the heart to repair itself. These new insights set the stage for the development of new treatments for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Edgar BA. From cell structure to transcription: Hippo forges a new path. Cell. 2006;124(2):267–73.

    Article  CAS  PubMed  Google Scholar 

  2. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61. Pioneer work demonstrated Hippo signaling interacting with Wnt signaling suppresses cardiomyocyte proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9. Follow-up study of Heallen et al Science 2011 demonstrated Hippo signaling effect Yap acting through TEAD is sufficient to stimulate neonatal cardiomyocyte proliferation.

    Article  Google Scholar 

  4. Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70. Follow-up study of Heallen et al Science 2011, showed Yap connects to β-catenin through activating IGF signaling in cardiac growth regulation.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16(5):425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83.

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development. 2011;138(11):2337–46.

    Article  CAS  PubMed  Google Scholar 

  8. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 2011;30(12):2325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011;138(18):3907–14.

    Article  CAS  PubMed  Google Scholar 

  10. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.

    Article  CAS  PubMed  Google Scholar 

  11. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poss KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol. 2007;18(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  13. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kajstura J, Rota M, Cappetta D, Ogorek B, Arranto C, Bai Y, et al. Cardiomyogenesis in the aging and failing human heart. Circulation. 2012;126(15):1869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013;110(34):13839–44. First time illustrated activating Yap promotes adult mammalian heart regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80. First time shown that newborn mice have heart regeneration ability within the first week after birth, which aroused wide interests in the mechanism study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsui Y, Nakano N, Shao D, Gao S, Luo W, Hong C, et al. Lats2 is a negative regulator of myocyte size in the heart. Circ Res. 2008;103(11):1309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Odashima M, Usui S, Takagi H, Hong C, Liu J, Yokota M, et al. Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ Res. 2007;100(9):1344–52.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, et al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest. 2003;111(10):1463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288(6):3977–88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. The EMBO journal. 2012;31(5):1109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra238.

    Article  Google Scholar 

  27. Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115(3):354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 2015;116(1):35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morikawa Y, Zhang M, Heallen T, Leach J, Tao G, Xiao Y, et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci Signal. 2015;8(375):ra41. This paper discovered Hippo signaling suppresses cytoskeleton remodeling and cell protrusion, which are required for heart regeneration.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hong KU, Bolli R. Cardiac stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med. 2014;16(7):324.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9(6):527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol. 2015;17(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  33. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8.

    Article  CAS  PubMed  Google Scholar 

  34. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139(4):757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  36. Mosqueira D, Pagliari S, Uto K, Ebara M, Romanazzo S, Escobedo-Lucea C, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano. 2014;8(3):2033–47.

    Article  CAS  PubMed  Google Scholar 

  37. Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech. 2010;43(1):93–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116(8):1378–91.

    Article  CAS  PubMed  Google Scholar 

  40. Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet. 2012;21(9):2054–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78.

    Article  CAS  PubMed  Google Scholar 

  42. Del Re DP, Matsuda T, Zhai P, Gao S, Clark GJ, Van Der Weyden L, et al. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. J Clin Invest. 2010;120(10):3555–67.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.F.M was supported by the Transatlantic Network of Excellence Award LeDucq Foundation Transatlantic Networks of Excellence in Cardiovascular Research 14CVD01: “Defining the genomic topology of atrial fibrillation,” NIH Grants DE 023177 and HL 118761, and the Vivian L. Smith Foundation (J.F.M.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Martin MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine and Stem-cell Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Leach, J., Wang, J. et al. Hippo/Yap Signaling in Cardiac Development and Regeneration. Curr Treat Options Cardio Med 18, 38 (2016). https://doi.org/10.1007/s11936-016-0461-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0461-y

Keywords

Navigation