Skip to main content

Advertisement

Log in

Metabolic Profiling for the Detection of Bladder Cancer

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The development and progression of many human diseases often result in changes in gene expression and protein and metabolite concentrations. Changes at the protein and metabolite level often are detectable in biological fluids and tissues before the appearance of clinical symptoms, rendering them useful diagnostic and prognostic biomarkers. As with many conditions, the discovery of a sensitive and specific urinary biomarker for bladder cancer would save lives and reduce the suffering due to this condition. A number of potential urinary protein biomarkers for bladder cancer have been identified, but they lack the sensitivity and specificity required to replace cystoscopy and histopathology. We discuss the use of mass spectrometry and nuclear magnetic resonance spectroscopy for the detection of metabolites in biological samples, comment on their advantages and limitations, and discuss recently published work in urine metabolic profiling for bladder cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Mitra AP, Cote RJ: Molecular screening for bladder cancer: progress and potential. Nat Rev Urol 2010, 7:11–20. The authors present a comprehensive review of the relative performance of major molecular tests for bladder cancer–specifying characteristics, sensitivity, and specificity.

    Article  CAS  PubMed  Google Scholar 

  2. Ptolemy AS, Rifai N: What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation scheme. Scand J Clin Lab Invest Suppl 2010, 242:6–14.

    Article  PubMed  Google Scholar 

  3. Schmidt C: Metabolomics takes its place as latest up-and-coming “omic” science. J Natl Cancer Inst 2004, 96:732–734.

    Article  PubMed  Google Scholar 

  4. National Cancer Institute: Bladder Cancer Home Page. Available at http://www.cancer.gov/cancer_information/cancer_type/bladder. Accessed October 2010.

  5. Alvarez A, Lokeshwar VB: Bladder cancer biomarkers: current developments and future implementation. Curr Opin Urol 2007, 17:341–346.

    Article  PubMed  Google Scholar 

  6. •• Konety BR: Molecular markers in bladder cancer: a critical appraisal. Urol Oncol 2006, 24: 326–337. This article presents an excellent and informative discussion of molecular markers, pointing out the limitations, sensitivities, and specificities of each.

    CAS  PubMed  Google Scholar 

  7. McConkey DJ, Lee S, Choi W, et al.: Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression. Urol Oncol 2010, 28:429–440.

    CAS  PubMed  Google Scholar 

  8. • Lintula S, Hotakainen K: Developing biomarkers for improved diagnosis and treatment outcome monitoring of bladder cancer. Expert Opin Biol Ther 2010, 10:1169–1180. This is an up-to-date discussion of bladder cancer biomarkers.

    Article  PubMed  Google Scholar 

  9. Bryan RT, Zeegers MP, James ND, et al.: Biomarkers in bladder cancer. BJU Int 2010, 105:608–613.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson VL, Porter M, Messing E, et al.: BCAN Think Tank session 2: Molecular detection of bladder cancer: The path to progress. Urol Oncol 2010, 28:334–337.

    PubMed  Google Scholar 

  11. Ellis DI, Dunn WB, Griffin JL, et al.: Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 2007, 8:1243–1266.

    Article  CAS  PubMed  Google Scholar 

  12. Issaq HJ, Nativ O, Waybright T, et al.: Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol 2008, 179:2422–2426.

    Article  CAS  PubMed  Google Scholar 

  13. Pasikanti KK, Esuvaranathan K, Ho PC, et al.: Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res 2010, 9:2988–2995.

    Article  CAS  PubMed  Google Scholar 

  14. • Srivastava S, Roy R, Singh S, et al.: Taurine—a possible fingerprint biomarker in non-muscle invasive bladder cancer: A pilot study by 1H NMR spectroscopy. Cancer Biomark 2010, 6:11–20. This is a well-designed 1 H metabolic profiling study of human urine study for bladder-cancer biomarker discovery. Unfortunately, the authors only had access to a 400 MHz NMR spectrometer.

    PubMed  Google Scholar 

  15. Kim K, Aronov P, Zakharkin SO, et al.: Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics 2009, 8:558–570.

    Article  CAS  PubMed  Google Scholar 

  16. Kind T, Tolstikov V, Fiehn O, Weiss RH: A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem 2007, 363:185–195.

    Article  CAS  PubMed  Google Scholar 

  17. Odunsi K: Cancer diagnostics using 1H-NMR-based metabolomics. Ernst Schering Found Symp Proc 2007, (4):205–226.

    Article  PubMed  Google Scholar 

  18. Oakman C, Tenori L, Biganzoli L, et al.: Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol 2010 May 10 (Epub ahead of print).

  19. Urayama S, Zou W, Brooks K, Tolstikov V: Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom 2010, 24:613–620.

    Article  CAS  PubMed  Google Scholar 

  20. Rocha CM, Barros AS, Gil AM, et al.: Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 2010, 9:319–332.

    Article  CAS  PubMed  Google Scholar 

  21. Wu H, Xue R, Tang Z, et al.: Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem 2010, 396:1385–1395.

    Article  CAS  PubMed  Google Scholar 

  22. Wu H, Xue R, Lu C, et al.: Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877:3111–3117.

    Article  CAS  PubMed  Google Scholar 

  23. Chan EC, Koh PK, Mal M, et al.: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 2009, 8:352–361.

    Article  CAS  PubMed  Google Scholar 

  24. Feng B, Yue F, Zheng MH: Urinary markers in colorectal cancer. Adv Clin Chem 2009, 47:45–57.

    Article  CAS  PubMed  Google Scholar 

  25. Woo HM, Kim KM, Choi MH, et al.: Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta 2009, 400:63–69.

    Article  CAS  PubMed  Google Scholar 

  26. Griffin JL, Schokcor JP: Metabolic profiles of cancer cells. Nat Rev Cancer 2004, 4:551–561.

    Article  CAS  PubMed  Google Scholar 

  27. Hafner C, Knuechel R, Zanardo L, et al.: Evidence for oligoclonality and tumor spread by intraluminal seeding in multifocal urothelial carcinomas of upper and lower urinary tract. Oncogene 2001, 20:4910–4915.

    Article  CAS  PubMed  Google Scholar 

  28. Nordström A, Want E, Northen T, et al.: Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal Chem 2008, 80:421–429.

    Article  PubMed  Google Scholar 

  29. Waybright TJ, Van QN, Muschik GM, et al.: LC-MS in metabonomics: Optimization of experimental conditions for the analysis of metabolites in human urine. J Liquid Chromatogr Related Technol 2006, 29:2475–2497.

    Article  CAS  Google Scholar 

  30. Gonthier MP, Rios LY, Verny M, et al.: Novel liquid chromatography-electrospray ionization mass spectrometry method for the quantification in human urine of microbial aromatic acid metabolites derived from dietary polyphenols. J Chromatogr B Analyt Technol Biomed Life Sci 2003, 789:247–255.

    Article  CAS  PubMed  Google Scholar 

  31. Want EJ, O’Maille G, Smith CA, et al.: Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 2006, 78:743–752.

    Article  CAS  PubMed  Google Scholar 

  32. Sreekumar A, Poisson LM, Rajendiran TM, et al.: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457:910–914.

    Article  CAS  PubMed  Google Scholar 

  33. Sitter B, Bathen TF, Tessem MB, Gribbestad IS: High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc 2009, 54:239–254.

    Article  CAS  Google Scholar 

  34. Ma S, Chowdhury SK, Alton KB: Application of mass spectrometry for metabolite identification. Curr Drug Metab 2006, 7:503–523.

    Article  CAS  PubMed  Google Scholar 

  35. Beckonert O, Keun HC, Ebbels TM, et al.: Metabolic profiling, metabolomic and metabonomics procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007, 2:2692–2703.

    Article  CAS  PubMed  Google Scholar 

  36. Issaq HJ, Van QN, Waybright TJ, et al.: Analytical and statistical approaches to metabolomics research. J Sep Sci 2009, 32:2183–2199.

    Article  CAS  PubMed  Google Scholar 

  37. Ghandforoush-Sattari M, Mashayekhi S: Evaluation of taurine as a biomarker of liver damage in paracetamol poisoning. Eur J Pharmacol 2008, 581:171–176.

    Article  CAS  PubMed  Google Scholar 

  38. Nakanishi T, Otaki Y, Hasuike Y, et al.: Association of hyperhomocysteinemia with plasma sulfate and urine sulfate excretion in patients with progressive renal disease. Am J Kidney Dis 2002, 40:909–915.

    Article  CAS  PubMed  Google Scholar 

  39. Winnike JH, Busby MG, Watkins PB, O’Connell TM: Effects of a prolonged standardized diet on normalizing the human metabolome. Am J Clin Nutr 2009, 90:1496–1501

    Article  CAS  PubMed  Google Scholar 

  40. Bayet-Robert M, Loiseau D, Rio P, Demidem A, et al.: Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn Reson Med 2010, 63:1172–1183.

    Article  CAS  PubMed  Google Scholar 

  41. Rai RK, Tripathi P, Sinha N: Quantification of metabolites from two-dimensional nuclear magnetic resonance spectroscopy: application to human urine samples. Anal Chem 2009, 81:10232–10238.

    Article  CAS  PubMed  Google Scholar 

  42. • Ludwig C, Ward DG, Martin A, et al.: Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magn Reson Chem 2009, 47(Suppl 1):S68–S73. The authors showed how 2D NMR can be used for fast targeted metabolic profiling of human serum with experimental time comparable to the popular 1D 1 H experiment.

    Article  CAS  PubMed  Google Scholar 

  43. • Issaq HJ, Abbott E, Veenstra TD: Utility of separation science in metabolomic studies. J Sep Sci 2008, 31:1936–1947. This article presents a comprehensive discussion of different chromatographic and electrophoretic separation procedures for the analysis of the metabolome.

    Article  CAS  PubMed  Google Scholar 

  44. Liu ZY, Phillips JB: Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 1991, 29:227–231.

    CAS  Google Scholar 

  45. Wilson ID, Nicholson JK, Castro-Perez J, et al.: High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 2005, 4:591–598.

    Article  CAS  PubMed  Google Scholar 

  46. Lenz EM, Wilson ID: Analytical strategies in metabonomics. J Proteome Res 2007, 6:443–458.

    Article  CAS  PubMed  Google Scholar 

  47. Kim JW, Lee G, Moon SM, et al.: Metabolic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients. Metabolomics 2010, 6:202–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contracts HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government.

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haleem J. Issaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van, Q.N., Veenstra, T.D. & Issaq, H.J. Metabolic Profiling for the Detection of Bladder Cancer. Curr Urol Rep 12, 34–40 (2011). https://doi.org/10.1007/s11934-010-0151-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-010-0151-3

Keywords

Navigation