Skip to main content

Advertisement

Log in

Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The pathogenesis of systemic sclerosis depends on a complex interplay between autoimmunity, vasculopathy, and fibrosis. Reversible phosphorylation on tyrosine residues, in response to growth factors and other stimuli, critically regulates each one of these three key pathogenic processes. Protein tyrosine kinases, the enzymes that catalyze addition of phosphate to tyrosine residues, are known players in systemic sclerosis, and tyrosine kinase inhibitors are undergoing clinical trials for treatment of this disease. Until recently, the role of tyrosine phosphatases—the enzymes that counteract the action of tyrosine kinases by removing phosphate from tyrosine residues—in systemic sclerosis has remained largely unknown. Here, we review the function of tyrosine phosphatases in pathways relevant to the pathogenesis of systemic sclerosis and their potential promise as therapeutic targets to halt progression of this debilitating rheumatic disease.

Recent Findings

Protein tyrosine phosphatases are emerging as important regulators of a multitude of signaling pathways and undergoing validation as molecular targets for cancer and other common diseases. Recent advances in drug discovery are paving the ways to develop new classes of tyrosine phosphatase modulators to treat human diseases.

Summary

Although so far only few reports have focused on tyrosine phosphatases in systemic sclerosis, these enzymes play a role in multiple pathways relevant to disease pathogenesis. Further studies in this field are warranted to explore the potential of tyrosine phosphatases as drug targets for systemic sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bernatsky S, Joseph L, Pineau CA, Belisle P, Hudson M, Clarke AE. Scleroderma prevalence: demographic variations in a population-based sample. Arthritis Rheum. 2009;61:400–4.

    Article  CAS  PubMed  Google Scholar 

  2. •• Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2011;8:42–54. Comprehensive review of the deregulated extracellular and intracellular signaling pathways in SSc and possible antifibrotic therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. •• Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67. This review explains why autoimmunity and vasculopathy precede fibrosis in SSc and how this disease differs from other fibrotic disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Bhattacharyya S, Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumatol Rep. 2015;17:474. This review highlights recent advances and emerging paradigms for understanding the regulation, complex functional roles, and therapeutic potential of TLRs in SSc pathogenesis.

    Article  PubMed  CAS  Google Scholar 

  5. Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, Michel BA, Gay RE, Muller-Ladner U, Matucci-Cerinic M, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95:109–16. This article shows that chronic and uncontrolled VEGF upregulation causes the disturbed vessel morphology in the skin of SSc patients.

    Article  CAS  PubMed  Google Scholar 

  6. • Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6. Comprehensive review explaining how aberrant TGFβ expression is implicated in the pathogenesis of fibrosis in SSc and why this cytokine represents a molecular therapeutic target in this disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Distler JH, Distler O. Intracellular tyrosine kinases as novel targets for anti-fibrotic therapy in systemic sclerosis. Rheumatology (Oxford). 2008;47(Suppl 5):v10–1. This review shows pre-clinical studies suggesting that selective tyrosine kinase inhibitors might be promising targets for anti-fibrotic approaches.

    Article  CAS  Google Scholar 

  8. Maurer B, Distler A, Dees C, Khan K, Denton CP, Abraham D, Gay RE, Michel BA, Gay S, Hw Distler J, et al. Levels of target activation predict antifibrotic responses to tyrosine kinase inhibitors. Ann Rheum Dis. 2013;72:2039–46.

    Article  CAS  PubMed  Google Scholar 

  9. Huang J, Beyer C, Palumbo-Zerr K, Zhang Y, Ramming A, Distler A, Gelse K, Distler O, Schett G, Wollin L, et al. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis. 2016;75:883–90.

    Article  CAS  PubMed  Google Scholar 

  10. •• Tsou PS, Talia NN, Pinney AJ, Kendzicky A, Piera-Velazquez S, Jimenez SA, Seibold JR, Phillips K, Koch AE. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. Arthritis Rheum. 2012;64:1978–89. In this study the authors present a novel molecular mechanism by which oxidative inactivation of PTP1B promotes a profibrotic phenotype in SSc fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  11. Aschner Y, Khalifah AP, Briones N, Yamashita C, Dolgonos L, Young SK, Campbell MN, Riches DW, Redente EF, Janssen WJ, et al. Protein tyrosine phosphatase alpha mediates profibrotic signaling in lung fibroblasts through TGF-beta responsiveness. Am J Pathol. 2014;184:1489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Parapuram SK, Shi-wen X, Elliott C, Welch ID, Jones H, Baron M, Denton CP, Abraham DJ, Leask A. Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J Invest Dermatol. 2011;131:1996–2003. This article confirmed in vivo the previous observation that PTEN is a key regulator of fibrogenesis and that PTEN agonists may represent SSc treatments.

    Article  CAS  PubMed  Google Scholar 

  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  14. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol. 2001;21:7117–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burke Jr TR, Zhang ZY. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Biopolymers. 1998;47:225–41.

    Article  CAS  PubMed  Google Scholar 

  16. den Hertog J, Ostman A, Bohmer FD. Protein tyrosine phosphatases: regulatory mechanisms. FEBS J. 2008;275:831–47.

    Article  CAS  Google Scholar 

  17. Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007;6:391–403.

    Article  CAS  PubMed  Google Scholar 

  18. Lang R, Hammer M, Mages J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol. 2006;177:7497–504.

    Article  CAS  PubMed  Google Scholar 

  19. Bohmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J. 2013;280:413–31.

    Article  PubMed  CAS  Google Scholar 

  20. Manno R, Boin F. Immunotherapy of systemic sclerosis. Immunotherapy. 2010;2:863–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chizzolini C. T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Curr Opin Rheumatol. 2008;20:707–12.

    Article  CAS  PubMed  Google Scholar 

  22. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24:328–32.

    CAS  PubMed  Google Scholar 

  23. Huang XL, Wang YJ, Yan JW, Wan YN, Chen B, Li BZ, Yang GJ, Wang J. Role of anti-inflammatory cytokines IL-4 and IL-13 in systemic sclerosis. Inflamm Res. 2015;64:151–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.

    Article  CAS  PubMed  Google Scholar 

  25. Wills-Karp M, Finkelman FD. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal. 2008;1:pe55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tao B, Jin W, Xu J, Liang Z, Yao J, Zhang Y, Wang K, Cheng H, Zhang X, Ke Y. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. J Immunol. 2014;193:2801–11.

    Article  CAS  PubMed  Google Scholar 

  27. Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem. 1998;273:33893–6.

    Article  CAS  PubMed  Google Scholar 

  28. Russell MA, Morgan NG. The impact of anti-inflammatory cytokines on the pancreatic beta-cell. Islets. 2014;6:e950547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Motohashi S, Koizumi K, Honda R, Maruyama A, Palmer HE, Mashima K. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners. Cell Immunol. 2014;289:128–34.

    Article  CAS  PubMed  Google Scholar 

  30. Ohtsuka T. Serum interleukin-6 level is reflected in elevated high-sensitivity C-reactive protein level in patients with systemic sclerosis. J Dermatol. 2010;37:801–6.

    Article  CAS  PubMed  Google Scholar 

  31. Baron M. Targeted therapy in systemic sclerosis. Rambam Maimonides Med J. 2016;7.

  32. Khanna D, Denton CP, Jahreis A, van Laar JM, Frech TM, Anderson ME, Baron M, Chung L, Fierlbeck G, Lakshminarayanan S, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet. 2016;387:2630–40.

    Article  CAS  PubMed  Google Scholar 

  33. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. BioEssays. 1999;21:47–52.

    Article  CAS  PubMed  Google Scholar 

  34. Tanuma N, Shima H, Nakamura K, Kikuchi K. Protein tyrosine phosphatase epsilonC selectively inhibits interleukin-6- and interleukin- 10-induced JAK-STAT signaling. Blood. 2001;98:3030–4.

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002;297:811–7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Q, Yao Y, Ericson SG. The protein tyrosine phosphatase CD45 is required for interleukin 6 signaling in U266 myeloma cells. Int J Hematol. 2004;79:63–73.

    Article  CAS  PubMed  Google Scholar 

  37. Lin WW, Yi Z, Stunz LL, Maine CJ, Sherman LA, Bishop GA. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development. Sci Signal. 2015;8:ra88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li J, Wang X, Zhang F, Yin H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther. 2013;138:441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.

    Article  CAS  PubMed  Google Scholar 

  40. Diaz-Gallo LM, Gourh P, Broen J, Simeon C, Fonollosa V, Ortego-Centeno N, Agarwal S, Vonk MC, Coenen M, Riemekasten G, et al. Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann Rheum Dis. 2011;70:454–62.

    Article  CAS  PubMed  Google Scholar 

  41. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10:602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamerman JA, Pottle J, Ni M, He Y, Zhang ZY, Buckner JH. Negative regulation of TLR signaling in myeloid cells—implications for autoimmune diseases. Immunol Rev. 2016;269:212–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang P, Liu X, Li Y, Zhu X, Zhan Z, Meng J, Li N, Cao X. Protein tyrosine phosphatase with proline-glutamine-serine-threonine-rich motifs negatively regulates TLR-triggered innate responses by selectively inhibiting IkappaB kinase beta/NF-kappaB activation. J Immunol. 2013;190:1685–94.

    Article  CAS  PubMed  Google Scholar 

  44. Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22:339–48.

    Article  CAS  PubMed  Google Scholar 

  45. Baleva M, Nikolov K. The role of intravenous immunoglobulin preparations in the treatment of systemic sclerosis. Int J Rheumatol. 2011;2011:829751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Raja J, Nihtyanova SI, Murray CD, Denton CP, Ong VH. Sustained benefit from intravenous immunoglobulin therapy for gastrointestinal involvement in systemic sclerosis. Rheumatology (Oxford). 2016;55:115–9.

    Article  Google Scholar 

  47. Bournazos S, Ravetch JV. Fcgamma receptor pathways during active and passive immunization. Immunol Rev. 2015;268:88–103.

    Article  CAS  PubMed  Google Scholar 

  48. Jouvin MH, Adamczewski M, Numerof R, Letourneur O, Valle A, Kinet JP. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J Biol Chem. 1994;269:5918–25.

    CAS  PubMed  Google Scholar 

  49. Durden DL, Kim HM, Calore B, Liu Y. The Fc gamma RI receptor signals through the activation of hck and MAP kinase. J Immunol. 1995;154:4039–47.

    CAS  PubMed  Google Scholar 

  50. Huang ZY, Hunter S, Kim MK, Indik ZK, Schreiber AD. The effect of phosphatases SHP-1 and SHIP-1 on signaling by the ITIM- and ITAM-containing Fcgamma receptors FcgammaRIIB and FcgammaRIIA. J Leukoc Biol. 2003;73:823–9.

    Article  CAS  PubMed  Google Scholar 

  51. Gu H, Botelho RJ, Yu M, Grinstein S, Neel BG. Critical role for scaffolding adapter Gab2 in Fc gamma R-mediated phagocytosis. J Cell Biol. 2003;161:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Young JA, Becker AM, Medeiros JJ, Shapiro VS, Wang A, Farrar JD, Quill TA, Hooft van Huijsduijnen R, van Oers NS. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol. 2008;45:3756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mancini F, Rigacci S, Berti A, Balduini C, Torti M. The low-molecular-weight phosphotyrosine phosphatase is a negative regulator of FcgammaRIIA-mediated cell activation. Blood. 2007;110:1871–8.

    Article  CAS  PubMed  Google Scholar 

  54. LeRoy EC. Systemic sclerosis. A vascular perspective. Rheum Dis Clin N Am. 1996;22:675–94.

    Article  CAS  Google Scholar 

  55. Furspan PB, Chatterjee S, Mayes MD, Freedman RR. Cooling-induced contraction and protein tyrosine kinase activity of isolated arterioles in secondary Raynaud’s phenomenon. Rheumatology (Oxford). 2005;44:488–94.

    Article  CAS  Google Scholar 

  56. Jimenez SA, Piera-Velazquez S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of systemic sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol. 2016;51:26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P, Giacomelli R. Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev. 2011;10:590–4.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu C, Ma X, Hu Y, Guo L, Chen B, Shen K, Xiao Y. Safety and efficacy profile of lenvatinib in cancer therapy: a systematic review and meta-analysis. Oncotarget. 2016;7:44545–57.

    PubMed  PubMed Central  Google Scholar 

  59. Diaz-Cano SJ. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:2727. author reply 2727

    CAS  PubMed  Google Scholar 

  60. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19:2003–12.

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 2001;20:2768–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holmqvist K, Cross M, Riley D, Welsh M. The Shb adaptor protein causes Src-dependent cell spreading and activation of focal adhesion kinase in murine brain endothelial cells. Cell Signal. 2003;15:171–9.

    Article  CAS  PubMed  Google Scholar 

  63. Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2014;130:902–9.

    Article  CAS  PubMed  Google Scholar 

  64. Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016;123:1722–30.

    Article  PubMed  Google Scholar 

  65. Hao Q, Samten B, Ji HL, Zhao ZJ, Tang H. Tyrosine phosphatase PTP-MEG2 negatively regulates vascular endothelial growth factor receptor signaling and function in endothelial cells. Am J Physiol Cell Physiol. 2012;303:C548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, et al. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 2000;275:11216–21.

    Article  CAS  PubMed  Google Scholar 

  67. Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem. 1997;272:32521–7.

    Article  CAS  PubMed  Google Scholar 

  68. Soeda S, Shimada T, Koyanagi S, Yokomatsu T, Murano T, Shibuya S, Shimeno H. An attempt to promote neo-vascularization by employing a newly synthesized inhibitor of protein tyrosine phosphatase. FEBS Lett. 2002;524:54–8.

    Article  CAS  PubMed  Google Scholar 

  69. Stratton R, Rajkumar V, Ponticos M, Nichols B, Shiwen X, Black CM, Abraham DJ, Leask A. Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J. 2002;16:1949–51.

    CAS  PubMed  Google Scholar 

  70. Ma P, Cierniewska A, Signarvic R, Cieslak M, Kong H, Sinnamon AJ, Neubig RR, Newman DK, Stalker TJ, Brass LF. A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling. Blood. 2012;119:1935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci. 2012;119:302–13.

    Article  CAS  PubMed  Google Scholar 

  72. Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S, McLaughlin V, Hill N, Tapson VF, Robbins IM, et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;169:441–7.

    Article  PubMed  Google Scholar 

  73. Pulido T, Adzerikho I, Channick RN, Delcroix M, Galie N, Ghofrani HA, Jansa P, Jing ZC, Le Brun FO, Mehta S, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369:809–18.

    Article  CAS  PubMed  Google Scholar 

  74. Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol. 2007;47:731–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu S, Premont RT, Kontos CD, Huang J, Rockey DC. Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt. J Biol Chem. 2003;278:49929–35.

    Article  CAS  PubMed  Google Scholar 

  76. Chen CH, Cheng TH, Lin H, Shih NL, Chen YL, Chen YS, Cheng CF, Lian WS, Meng TC, Chiu WT, et al. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol. 2006;69:1347–55.

    Article  CAS  PubMed  Google Scholar 

  77. Catalan RE, Gargiulo L, Martinez AM, Calcerrada MC, Liras A. Protein tyrosine phosphatase activity modulation by endothelin-1 in rabbit platelets. FEBS Lett. 1997;400:280–4.

    Article  CAS  PubMed  Google Scholar 

  78. Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol. 2014;10:390–402.

    Article  CAS  PubMed  Google Scholar 

  79. • Lafyatis R. Transforming growth factor beta—at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10:706–19. This review provides an increasingly secure framework for understanding TGFβ in SSc pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  80. Liang R, Sumova B, Cordazzo C, Mallano T, Zhang Y, Wohlfahrt T, et al. The transcription factor GLI2 as a downstream mediator of transforming growth factor-beta-induced fibroblast activation in SSc. Ann Rheum Dis. 2016

  81. Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56:323–33.

    Article  CAS  PubMed  Google Scholar 

  82. Rice LM, Padilla CM, McLaughlin SR, Mathes A, Ziemek J, Goummih S, Nakerakanti S, York M, Farina G, Whitfield ML, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125:2795–807.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. •• Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum. 2010;62:2117–26. This is the first observation that PTEN deficiency is a critical determinant of the profibrotic phenotype of SSc fibroblasts.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Buonato JM, Lan IS, Lazzara MJ. EGF augments TGFbeta-induced epithelial-mesenchymal transition by promoting SHP2 binding to GAB1. J Cell Sci. 2015;128:3898–909.

    Article  CAS  PubMed  Google Scholar 

  86. Tzouvelekis A, Yu G, Lino Cardenas CL, Herazo-Maya JD, Wang R, Woolard T, Zhang Y, Sakamoto K, Lee H, Yi JS, et al. SH2 domain-containing phosphatase-2 is a novel antifibrotic regulator in pulmonary fibrosis. Am J Respir Crit Care Med. 2017;195:500–14.

    Article  PubMed  Google Scholar 

  87. Chen X, Wang H, Liao HJ, Hu W, Gewin L, Mernaugh G, Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J Clin Invest. 2014;124:3295–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iwayama T, Olson LE. Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep. 2013;15:304.

    Article  PubMed  CAS  Google Scholar 

  89. Daoussis D, Tsamandas AC, Liossis SN, Antonopoulos I, Karatza E, Yiannopoulos G, Andonopoulos AP. B-cell depletion therapy in patients with diffuse systemic sclerosis associates with a significant decrease in PDGFR expression and activation in spindle-like cells in the skin. Arthritis Res Ther. 2012;14:R145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ludwicka A, Ohba T, Trojanowska M, Yamakage A, Strange C, Smith EA, Leroy EC, Sutherland S, Silver RM. Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J Rheumatol. 1995;22:1876–83.

    CAS  PubMed  Google Scholar 

  91. Gordon JK, Martyanov V, Magro C, Wildman HF, Wood TA, Huang WT, Crow MK, Whitfield ML, Spiera RF. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther. 2015;17:213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79:1283–316.

    CAS  PubMed  Google Scholar 

  93. Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F, Camici G, Raugei G, Ramponi G. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem. 2002;277:37331–8.

    Article  CAS  PubMed  Google Scholar 

  94. Markova B, Herrlich P, Ronnstrand L, Bohmer FD. Identification of protein tyrosine phosphatases associating with the PDGF receptor. Biochemistry. 2003;42:2691–9.

    Article  CAS  PubMed  Google Scholar 

  95. Dagnell M, Frijhoff J, Pader I, Augsten M, Boivin B, Xu J, Mandal PK, Tonks NK, Hellberg C, Conrad M, et al. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-beta receptor tyrosine kinase signaling. Proc Natl Acad Sci U S A. 2013;110:13398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karlsson S, Kowanetz K, Sandin A, Persson C, Ostman A, Heldin CH, Hellberg C. Loss of T-cell protein tyrosine phosphatase induces recycling of the platelet-derived growth factor (PDGF) beta-receptor but not the PDGF alpha-receptor. Mol Biol Cell. 2006;17:4846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qi JH, Ito N, Claesson-Welsh L. Tyrosine phosphatase SHP-2 is involved in regulation of platelet-derived growth factor-induced migration. J Biol Chem. 1999;274:14455–63.

    Article  CAS  PubMed  Google Scholar 

  98. Taddei ML, Chiarugi P, Cirri P, Talini D, Camici G, Manao G, Raugei G, Ramponi G. LMW-PTP exerts a differential regulation on PDGF- and insulin-mediated signaling. Biochem Biophys Res Commun. 2000;270:564–9.

    Article  CAS  PubMed  Google Scholar 

  99. Kovalenko M, Denner K, Sandstrom J, Persson C, Gross S, Jandt E, Vilella R, Bohmer F, Ostman A. Site-selective dephosphorylation of the platelet-derived growth factor beta-receptor by the receptor-like protein-tyrosine phosphatase DEP-1. J Biol Chem. 2000;275:16219–26.

    Article  CAS  PubMed  Google Scholar 

  100. Ma H, Wardega P, Mazaud D, Klosowska-Wardega A, Jurek A, Engstrom U, Lennartsson J, Heldin CH. Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cell Signal. 2015;27:2209–19.

    Article  CAS  PubMed  Google Scholar 

  101. Abraham D. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford). 2008;47(Suppl 5):v8–9.

    Article  CAS  Google Scholar 

  102. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19:133–44.

    Article  PubMed  CAS  Google Scholar 

  103. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Raghu G, Scholand MB, de Andrade J, Lancaster L, Mageto Y, Goldin J, Brown KK, Flaherty KR, Wencel M, Wanger J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47:1481–91.

    Article  PubMed  Google Scholar 

  105. Hall-Glenn F, Lyons KM. Roles for CCN2 in normal physiological processes. Cell Mol Life Sci. 2011;68:3209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119:4803–10.

    Article  CAS  PubMed  Google Scholar 

  107. Crean JK, Furlong F, Finlay D, Mitchell D, Murphy M, Conway B, Brady HR, Godson C, Martin F. Connective tissue growth factor [CTGF]/CCN2 stimulates mesangial cell migration through integrated dissolution of focal adhesion complexes and activation of cell polarization. FASEB J. 2004;18:1541–3.

    CAS  PubMed  Google Scholar 

  108. Wahab N, Cox D, Witherden A, Mason RM. Connective tissue growth factor (CTGF) promotes activated mesangial cell survival via up-regulation of mitogen-activated protein kinase phosphatase-1 (MKP-1). Biochem J. 2007;406:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tokumura A, Carbone LD, Yoshioka Y, Morishige J, Kikuchi M, Postlethwaite A, Watsky MA. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci. 2009;6:168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, Polosukhin V, Wain J, Karimi-Shah BA, Kim ND, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14:45–54.

    Article  CAS  PubMed  Google Scholar 

  111. Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res. 2014;55:1192–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010;91:130–8.

    Article  CAS  PubMed  Google Scholar 

  113. Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS One. 2009;4:e4580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Huang RY, Wen CC, Liao CK, Wang SH, Chou LY, Wu JC. Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells. Cell Biol Int. 2012;36:833–41.

    Article  CAS  PubMed  Google Scholar 

  115. Mittal Y, Pavlova Y, Garcia-Marcos M, Ghosh P. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. J Biol Chem. 2011;286:32404–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. •• Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148–52. This article demonstrates that pharmacological inhibition of SHP2 could represent a valid therapeutic approach for the treatment of cancers.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.

    Article  PubMed  CAS  Google Scholar 

  118. Gordon JK, Spiera RF. Targeting tyrosine kinases: a novel therapeutic strategy for systemic sclerosis. Curr Opin Rheumatol. 2010;22:690–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant AR069822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzio Bottini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, C., Bottini, N. Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets. Curr Rheumatol Rep 19, 28 (2017). https://doi.org/10.1007/s11926-017-0655-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-017-0655-7

Keywords

Navigation