Skip to main content

Advertisement

Log in

Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years

  • Systemic Lupus Erythematosus (G Tsokos, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The mechanistic target of rapamycin (mTOR) is a central regulator in cell growth, activation, proliferation, and survival. Activation of the mTOR pathway underlies the pathogenesis of systemic lupus erythematosus (SLE). While mTOR activation and its therapeutic reversal were originally discovered in T cells, recent investigations have also uncovered roles in other cell subsets including B cells, macrophages, and “non-immune” organs such as the liver and the kidney. Activation of mTOR complex 1 (mTORC1) precedes the onset of SLE and associated co-morbidities, such as anti-phospholipid syndrome (APS), and may act as an early marker of disease pathogenesis. Six case reports have now been published that document the development of SLE in patients with genetic activation of mTORC1. Targeting mTORC1 over-activation with N-acetylcysteine, rapamycin, and rapalogs provides an opportunity to supplant current therapies with severe side effect profiles such as prednisone or cyclophosphamide. In the present review, we will discuss the recent explosion of findings in support for a central role for mTOR activation in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-DG:

2-Deoxyglucose

5-hmC:

5-Hydroxmethylcytosine

ALT:

Alanine aminotransferase

ANA:

Anti-nuclear antibody

aPL:

Anti-phospholipid

APS:

Anti-phospholipid syndrome

AST:

Aspartate aminotransaminase

BAFF:

B cell-activating factor

CaMK4:

Calcium/calmodulin-dependent protein kinase IV

Cbl-b:

Casitas B-lineage lymphoma b

cGVHD:

Chronic graft versus host disease

CREM-α:

cAMP-responsive element modulator alpha

DN T cell:

CD3+CD4−CD8− double-negative T cell

DNA:

Deoxyribonucleic acid

dsDNA:

Double-stranded DNA

EBF1:

Early B cell factor 1

Egr:

Early growth response protein

ETC.:

Electron transport chain

GRAIL:

Gene related to anergy in lymphocytes

IFNγ:

Interferon gamma

IL-17:

Interleukin 17

iTreg:

inducible Treg

LAM:

Lymphangioleiomyomatosis

LN:

Lupus nephritis

miRNA:

microRNA

mRNA:

Messenger ribonucleic acid

MSC:

Mesenchymal stem cells

mTOR:

Mechanistic target of rapamycin

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

NAC:

N-acetylcysteine

NADH:

Nicotinamide adenine dinucleotide

NDUFS3:

NADH dehydrogenase iron-sulfur protein 3

PBMC:

Peripheral blood mononuclear cell

SLE:

Systemic lupus erythematosus

SLEDAI:

SLE disease activity index

snRNP:

Small nuclear ribonucleoproteins

TAL:

Transaldolase

TET:

Ten-eleven translocation methylcytosine dioxygenase

Tfh:

Follicular helper T cells

Th1:

T helper 1 cell

Th17:

T helper 17 cell

Th2:

T helper 2 cell

TLR7:

Toll-like receptor 7

TNF-α:

Tumor necrosis factor alpha

Treg:

Regulatory T cell

TSC:

Tuberous sclerosis complex

References

  1. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP, et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann Rheum Dis. 2014;73(10):1888–97.

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez DR, Telarico T, Bonilla E, Li Q, Banerjee S, Middleton FA, et al. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J Immunol (Baltim, Md: 1950). 2009;182(4):2063–73.

    Article  CAS  Google Scholar 

  3. Oaks Z, Winans T, Caza T, Fernandez D, Liu Y, Landas SK, et al. Mitochondrial dysfunction in the liver and antiphospholipid antibody production precede disease onset and respond to rapamycin in lupus-prone mice. Arthritis Rheumatol (Hoboken, N.J.) 2016.

  4. Gergely Jr P, Grossman C, Niland B, Puskas F, Neupane H, Allam F, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gergely Jr P, Niland B, Gonchoroff N, Pullmann Jr R, Phillips PE, Perl A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J Immunol (Baltim, Md: 1950). 2002;169(2):1092–101.

    Article  CAS  Google Scholar 

  6. Perl A, Gergely Jr P, Puskas F, Banki K. Metabolic switches of T-cell activation and apoptosis. Antioxid Redox Signal. 2002;4(3):427–43.

    Article  CAS  PubMed  Google Scholar 

  7. Tsokos GC. Systemic lupus erythematosus in 2015: cellular and metabolic requirements of effector T cells. Nat Rev Rheumatol. 2016;12(2):74–6.

    Article  CAS  PubMed  Google Scholar 

  8. Canaud G, Bienaime F, Tabarin F, Bataillon G, Seilhean D, Noel LH, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371(4):303–12.

    Article  PubMed  Google Scholar 

  9. Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol. 2016;12(3):169–82.

    Article  CAS  PubMed  Google Scholar 

  10. Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2002;99(7):4319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 2015;7(274):274ra18.

    Article  CAS  PubMed  Google Scholar 

  12. Nair V, Sreevalsan S, Basha R, Abdelrahim M, Abudayyeh A, Rodrigues Hoffman A, et al. Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J Biol Chem. 2014;289(40):27692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990;33(11):1665–73.

    Article  CAS  PubMed  Google Scholar 

  14. Corvetta A, Della Bitta R, Luchetti MM, Pomponio G. 5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J Chromatogr. 1991;566(2):481–91.

    Article  CAS  PubMed  Google Scholar 

  15. Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity. 2015;42(4):613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao M, Wang J, Liao W, Li D, Li M, Wu H, et al. Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus. J Autoimmun. 2016;69:64–73.

    Article  PubMed  Google Scholar 

  17. Banica LM, Besliu AN, Pistol GC, Stavaru C, Vlad V, Predeteanu D, et al. Dysregulation of anergy-related factors involved in regulatory T cells defects in systemic lupus erythematosus patients: rapamycin and vitamin D efficacy in restoring regulatory T cells. Int J Rheum Dis. 2014.

  18. Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005;6(5):472–80.

    Article  CAS  PubMed  Google Scholar 

  19. Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J Immunol (Baltim, Md: 1950). 2014;192(9):4134–44.

    Article  CAS  Google Scholar 

  20. Rother N, van der Vlag J. Disturbed T Cell signaling and altered Th17 and regulatory T cell subsets in the pathogenesis of systemic lupus erythematosus. Front Immunol. 2015;6:610.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koga T, Hedrich CM, Mizui M, Yoshida N, Otomo K, Lieberman LA, et al. CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124(5):2234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kshirsagar S, Riedl M, Billing H, Tonshoff B, Thangavadivel S, Steuber C, et al. Akt-dependent enhanced migratory capacity of Th17 cells from children with lupus nephritis. J Immunol (Baltim Md: 1950). 2014;193(10):4895–903.

    Article  CAS  Google Scholar 

  23. Lai ZW, Hanczko R, Bonilla E, Caza TN, Clair B, Bartos A, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012;64(9):2937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perl A, Hanczko R, Lai ZW, Oaks Z, Kelly R, Borsuk R, et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics: Off J Metabolomic Soc. 2015;11(5):1157–74.

    Article  CAS  Google Scholar 

  25. Lai ZW, Borsuk R, Shadakshari A, Yu J, Dawood M, Garcia R, et al. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J Immunol (Baltim, Md: 1950). 2013;191(5):2236–46.

    Article  CAS  Google Scholar 

  26. Zhang L, Bertucci AM, Ramsey-Goldman R, Harsha-Strong ER, Burt RK, Datta SK. Major pathogenic steps in human lupus can be effectively suppressed by nucleosomal histone peptide epitope-induced regulatory immunity. Clin immunol (Orlando, Fla). 2013;149(3):365–78.

    Article  CAS  Google Scholar 

  27. Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity. 2015;43(4):690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown SA, et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity. 2016;45(3):540–54.

    Article  CAS  PubMed  Google Scholar 

  29. Ding Y, Li J, Wu Q, Yang P, Luo B, Xie S, et al. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J Immunol (Baltim, Md: 1950). 2013;191(4):1614–24.

    Article  CAS  Google Scholar 

  30. Weinstein JS, Herman EI, Lainez B, Licona-Limon P, Esplugues E, Flavell R, et al. TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol. 2016;17(10):1197–205.

    Article  CAS  PubMed  Google Scholar 

  31. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2010;62(1):234–44.

    Article  CAS  PubMed  Google Scholar 

  32. Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet (Lond Engl). 2011;377(9767):721–31.

    Article  CAS  Google Scholar 

  33. Ke Z, Liang D, Zeng Q, Ren Q, Ma H, Gui L, et al. hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium signaling activation of mTOR pathway. Cytokine. 2013;62(2):310–21.

    Article  CAS  PubMed  Google Scholar 

  34. Zeng Q, Zhang H, Qin J, Xu Z, Gui L, Liu B, et al. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Cell Mol Life Sc: CMLS. 2015;72(24):4867–84.

    Article  CAS  Google Scholar 

  35. Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, et al. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics. 2015;14:7(1). doi:10.1186/s13148-015-0063-7.

    Google Scholar 

  36. Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y, et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity. 2014;41(3):375–88.

    Article  CAS  PubMed  Google Scholar 

  37. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science (New York, NY). 2011;334(6056):678–83.

    Article  CAS  Google Scholar 

  38. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, et al. Rapamycin unbalances the polarization of human macrophages to M1. Immunology. 2013;140(2):179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nat Commun. 2014;5:4696.

    Article  CAS  PubMed  Google Scholar 

  41. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Poglitsch M, Weichhart T, Hecking M, Werzowa J, Katholnig K, Antlanger M, et al. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(6):1458–68.

    Article  CAS  Google Scholar 

  43. Iwata Y, Bostrom EA, Menke J, Rabacal WA, Morel L, Wada T, et al. Aberrant macrophages mediate defective kidney repair that triggers nephritis in lupus-susceptible mice. J Immunol (Baltim, Md: 1950). 2012;188(9):4568–80.

    Article  CAS  Google Scholar 

  44. Sahu R, Bethunaickan R, Singh S, Davidson A. Structure and function of renal macrophages and dendritic cells from lupus-prone mice. Arthritis Rheumatol (Hoboken, NJ). 2014;66(6):1596–607.

    Article  CAS  Google Scholar 

  45. Olmes G, Buttner-Herold M, Ferrazzi F, Distel L, Amann K, Daniel C. CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. Arthritis Res Ther. 2016;18:90-016-0989-y.

    Article  Google Scholar 

  46. Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, et al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging. 2016;8(5):1102–14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Yu J, Oaks Z, Marchena-Mendez I, Francis L, Bonilla E, et al. Liver injury correlates with biomarkers of autoimmunity and disease activity and represents an organ system involvement in patients with systemic lupus erythematosus. Clin Immunol (Orlando, Fla). 2015;160(2):319–27.

    Article  CAS  Google Scholar 

  48. Miwa S, Jow H, Baty K, Johnson A, Czapiewski R, Saretzki G, et al. Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun. 2014;5:3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vila L, Roglans N, Baena M, Barroso E, Alegret M, Merlos M, et al. Metabolic alterations and increased liver mTOR expression precede the development of autoimmune disease in a murine model of lupus erythematosus. PLoS One. 2012;7(12), e51118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winchester R, Wiesendanger M, Zhang HZ, Steshenko V, Peterson K, Geraldino-Pardilla L, et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell beta-chain clonotypes in progressive lupus nephritis. Arthritis Rheum. 2012;64(5):1589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol (Baltim, Md: 1950). 2008;181(12):8761–6.

    Article  CAS  Google Scholar 

  52. Singh N, Birkenbach M, Caza T, Perl A, Cohen PL. Tuberous sclerosis and fulminant lupus in a young woman. J Clin Rheumatol: Pract Rep Rheum Musculoskelet Dis. 2013;19(3):134–7.

    Article  Google Scholar 

  53. Carrasco Cubero C, Bejarano Moguel V, Fernandez Gil MA, Alvarez Vega JL. Coincidence of tuberous sclerosis and systemic lupus erythematosus—a case report. Reumatol Clin. 2016;12(4):219–22.

    Article  PubMed  Google Scholar 

  54. Moss J, Avila NA, Barnes PM, Litzenberger RA, Bechtle J, Brooks PG, et al. Prevalence and clinical characteristics of lymphangioleiomyomatosis (LAM) in patients with tuberous sclerosis complex. Am J Respir Crit Care Med. 2001;164(4):669–71.

    Article  CAS  PubMed  Google Scholar 

  55. Robb VA, Astrinidis A, Henske EP. Frequent [corrected] hyperphosphorylation of ribosomal protein S6 [corrected] in lymphangioleiomyomatosis-associated angiomyolipomas. Mod Pathol: Off J U S Can Acad Pathol Inc. 2006;19(6):839–46.

    Article  CAS  Google Scholar 

  56. Suzuki K, Nagasaka K, Oda K, Abe H, Maeda D, Matsumoto Y, et al. A case of lymphangioleiomyomatosis associated with endometrial cancer and severe systemic lupus erythematosus. BMC Cancer. 2016;16:390-016-2413-z.

    Article  Google Scholar 

  57. Olde Bekkink M, Ahmed-Ousenkova YM, Netea MG, van der Velden WJ, Berden JH. Coexistence of systemic lupus erythematosus, tuberous sclerosis and aggressive natural killer-cell leukaemia: coincidence or correlated? Lupus. 2016;25(7):766–71.

    Article  CAS  PubMed  Google Scholar 

  58. Yap DY, Ma MK, Tang CS, Chan TM. Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrol (Carlton, Vic). 2012;17(8):676–80.

    Article  CAS  Google Scholar 

  59. Lai ZW, Marchena-Mendez I, Perl A. Oxidative stress and Treg depletion in lupus patients with anti-phospholipid syndrome. Clin Immunol (Orlando, Fla). 2015;158(2):148–52.

    Article  CAS  Google Scholar 

  60. Fernandez D, Bonilla E, Mirza N, Niland B, Perl A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu T, Ye Y, Min SY, Zhu J, Khobahy E, Zhou J, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol (Hoboken, NJ). 2014;66(11):3129–39.

    Article  CAS  Google Scholar 

  62. Lui SL, Yung S, Tsang R, Zhang F, Chan KW, Tam S, et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus. 2008;17(4):305–13.

    Article  CAS  PubMed  Google Scholar 

  63. Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346(1):33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants AI072648, DK078922, AI122176, AI048079, and AR068052 from the National Institutes of Health, Investigator-Initiated Research Grant P0468X1-4470/WS1234172 from Pfizer, the American College of Rheumatology Research Foundation, and the Central New York Community Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Perl.

Ethics declarations

Conflict of Interest

Drs. Oaks, Winans, Huang, Banki, and Perl declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of theTopical Collection on Systemic Lupus Erythematosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oaks, Z., Winans, T., Huang, N. et al. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr Rheumatol Rep 18, 73 (2016). https://doi.org/10.1007/s11926-016-0622-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0622-8

Keywords

Navigation