Skip to main content

Advertisement

Log in

Mild Cognitive Impairment: Diagnosis, Longitudinal Course, and Emerging Treatments

  • Geriatric Disorders (W McDonald, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Mild cognitive impairment (MCI) is widely regarded as the intermediate stage of cognitive impairment between the changes seen in normal cognitive aging and those associated with dementia. Elderly patients with MCI constitute a high-risk population for developing dementia, in particular Alzheimer’s disease (AD). Although the core clinical criteria for MCI have remained largely unchanged, the operational definition of MCI has undergone several revisions over the course of the last decade and remains an evolving diagnosis. Prognostic implications of this diagnosis are becoming clearer with regard to the risk of progressive cognitive deterioration. Although patients with MCI may represent an optimal target population for pharmacological and non-pharmacological interventions, results from clinical trials have been mixed and an effective treatment remains elusive. This article provides a brief overview of the evolution of the concept of MCI and reviews current diagnostic criteria, the longitudinal course of the disorder, and current and emerging treatments for MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.

    Article  PubMed  CAS  Google Scholar 

  2. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    Article  PubMed  CAS  Google Scholar 

  3. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.

    Article  PubMed  CAS  Google Scholar 

  4. Manly JJ, Tang M-X, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63(4):494–506.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ravaglia G, Forti P, Montesi F, et al. Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population. J Am Geriatr Soc. 2008;56(1):51–8.

    Article  PubMed  Google Scholar 

  6. Luck T, Luppa M, Wiese B, et al. Prediction of incident dementia: impact of impairment in instrumental activities of daily living and mild cognitive impairment-results from the German study on ageing, cognition, and dementia in primary care patients. Am J Geriatr Psychiatr. 2012;20(11):943–54.

    Article  Google Scholar 

  7. Reisberg B, Ferris SH, de Leon MJ, et al. Stage-specific behavioral, cognitive, and in vivo changes in community residing subjects with age-associated memory impairment and primary degenerative dementia of the Alzheimer type. Drug Dev Res. 1988;15(2–3):101–14.

    Article  Google Scholar 

  8. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. 2013.

  10. Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5(3):228–34.

    Article  PubMed  CAS  Google Scholar 

  11. Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65(5):557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fennema-Notestine C, Hagler DJ, McEvoy LK, et al. Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum Brain Mapp. 2009;30(10):3238–53.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease. Expert Rev Neurother. 2010;10(11):1667–73.

    Article  PubMed  CAS  Google Scholar 

  14. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364(23):2227–34.

    Article  PubMed  CAS  Google Scholar 

  15. Ganguli M, Blacker D, Blazer DG, et al. Classification of neurocognitive disorders in DSM-5: a work in progress. Am J Geriatr Psychiatr. 2011;19(3):205–10.

    Article  Google Scholar 

  16. Stephan BCM, Hunter S, Harris D, et al. The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol Psychiatry. 2012;17(11):1056–76.

    Article  PubMed  CAS  Google Scholar 

  17. Petersen RC, Caracciolo B, Brayne C, et al. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275(3):214–28.

    Article  PubMed  CAS  Google Scholar 

  18. Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology. 2010;75(10):889–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Roberts RO, Geda YE, Knopman DS, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology. 2008;30(1):58–69.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Molano J, Boeve B, Ferman T, et al. Mild cognitive impairment associated with limbic and neocortical Lewy body disease: a clinicopathological study. Brain. 2010;133(Pt 2):540–56.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Farias ST, Mungas D, Reed BR, et al. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol. 2009;66(9):1151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Giannakopoulos P, Herrmann FR, Bussière T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60(9):1495–500.

    Article  PubMed  CAS  Google Scholar 

  25. Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.

    Article  PubMed  CAS  Google Scholar 

  26. Morris JC. Early-stage and preclinical Alzheimer disease. Alzheimer Dis Assoc Disord. 2005;19(3):163–5.

    Article  PubMed  Google Scholar 

  27. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roberts RO, Knopman DS, Mielke MM, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014;82(4):317–25. A study that showed that patients with MCI, including those who reverted to normal cognition, still had a high risk of progressing to dementia, suggesting that a diagnosis of MCI at any time has prognostic value.

    Article  PubMed  Google Scholar 

  29. Bonanni L, Thomas A, Onofrj M. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2006;66(9):1455. author reply 1455.

    Article  PubMed  Google Scholar 

  30. Weintraub S, Wicklund AH, Salmon DP. The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4):a006171.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seelaar H, Kamphorst W, Rosso SM, et al. Distinct genetic forms of frontotemporal dementia. Neurology. 2008;71(16):1220–6.

    Article  PubMed  CAS  Google Scholar 

  32. Perry DC, Miller BL. Frontotemporal dementia. Semin Neurol. 2013;33(4):336–41.

    Article  PubMed  Google Scholar 

  33. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.

    Article  PubMed  CAS  Google Scholar 

  34. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Nickerson DA, Taylor SL, Fullerton SM, et al. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 2000;10(10):1532–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9(10):768–78.

    Article  PubMed  CAS  Google Scholar 

  37. Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7(2):180–4.

    Article  PubMed  CAS  Google Scholar 

  38. Aggarwal NT, Wilson RS, Beck TL, et al. The apolipoprotein E epsilon4 allele and incident Alzheimer’s disease in persons with mild cognitive impairment. Neurocase. 2005;11(1):3–7.

    Article  PubMed  Google Scholar 

  39. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270–81.

    Article  PubMed  CAS  Google Scholar 

  40. Panza F, Frisardi V, Capurso C, et al. Late-life depression, mild cognitive impairment, and dementia: possible continuum? Am J Geriatr Psychiatr. 2010;18(2):98–116.

    Article  Google Scholar 

  41. Barnes DE, Alexopoulos GS, Lopez OL, et al. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63(3):273–9.

    Article  PubMed  Google Scholar 

  42. Geda YE, Knopman DS, Mrazek DA, et al. Depression, apolipoprotein E genotype, and the incidence of mild cognitive impairment: a prospective cohort study. Arch Neurol. 2006;63(3):435–40.

    Article  PubMed  Google Scholar 

  43. Goveas JS, Espeland MA, Woods NF, et al. Depressive symptoms and incidence of mild cognitive impairment and probable dementia in elderly women: the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2011;59(1):57–66.

    Article  PubMed  Google Scholar 

  44. Unverzagt FW, Ogunniyi A, Taler V, et al. Incidence and risk factors for cognitive impairment no dementia and mild cognitive impairment in African Americans. Alzheimer Dis Assoc Disord. 2011;25(1):4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ravaglia G, Forti P, Lucicesare A, et al. Prevalent depressive symptoms as a risk factor for conversion to mild cognitive impairment in an elderly Italian cohort. Am J Geriatr Psychiatr. 2008;16(10):834–43.

    Article  Google Scholar 

  46. Köhler S, van Boxtel MPJ, van Os J, et al. Depressive symptoms and cognitive decline in community-dwelling older adults. J Am Geriatr Soc. 2010;58(5):873–9.

    Article  PubMed  Google Scholar 

  47. Dotson VM, Beydoun MA, Zonderman AB. Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology. 2010;75(1):27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foland-Ross LC, Gotlib IH. Cognitive and neural aspects of information processing in major depressive disorder: an integrative perspective. Front Psychol. 2012;3:489.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Butters MA, Young JB, Lopez O, et al. Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues Clin Neurosci. 2008;10(3):345–57.

    PubMed  PubMed Central  Google Scholar 

  50. Korczyn AD, Halperin I. Depression and dementia. J Neurol Sci. 2009;283(1–2):139–42.

    Article  PubMed  Google Scholar 

  51. Richard E, Reitz C, Honig LH, et al. Late-life depression, mild cognitive impairment, and dementia. JAMA Neurol. 2013;70(3):374–82.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Enache D, Winblad B, Aarsland D. Depression in dementia: epidemiology, mechanisms, and treatment. Curr Opin Psychiatr. 2011;24(6):461–72.

    Google Scholar 

  53. Reynolds CF, Butters MA, Lopez O, et al. Maintenance treatment of depression in old age: a randomized, double-blind, placebo-controlled evaluation of the efficacy and safety of donepezil combined with antidepressant pharmacotherapy. Arch Gen Psychiatry. 2011;68(1):51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014. doi:10.1016/j.jalz.2014.01.001. Subjective Cognitive Decline Initiative workgroup recommendations for defining subjective cognitive decline in preclinical Alzheimer's disease.

    Google Scholar 

  55. Wang Y, Risacher SL, West JD, et al. Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment. J Alzheimers Dis. 2013;35(4):751–60.

    PubMed  PubMed Central  Google Scholar 

  56. Amariglio RE, Becker JA, Carmasin J, et al. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia. 2012;50(12):2880–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saykin AJ, Wishart HA, Rabin LA, et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology. 2006;67(5):834–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Jessen F, Wiese B, Bachmann C, et al. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry. 2010;67(4):414–22.

    Article  PubMed  Google Scholar 

  59. Reisberg B, Shulman MB, Torossian C, et al. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement. 2010;6(1):11–24.

    Article  PubMed  Google Scholar 

  60. Rami L, Fortea J, Bosch B, et al. Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients. J Alzheimers Dis. 2011;23(2):319–26.

    PubMed  CAS  Google Scholar 

  61. Visser PJ, Verhey F, Knol DL, et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol. 2009;8(7):619–27.

    Article  PubMed  Google Scholar 

  62. Sperling RA, Jack CR, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med. 2011;3(111):111cm33.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dumas JA, Newhouse PA. The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav. 2011;99(2):254–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Klafki H-W, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain. 2006;129(Pt 11):2840–55.

    Article  PubMed  Google Scholar 

  65. Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–16.

    Article  PubMed  CAS  Google Scholar 

  66. Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI: a 48-week randomized, placebo-controlled trial. Neurology. 2009;72(18):1555–61.

    Article  PubMed  CAS  Google Scholar 

  67. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.

    Article  PubMed  CAS  Google Scholar 

  68. Salloway S, Ferris S, Kluger A, et al. Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial. Neurology. 2004;63(4):651–7.

    Article  PubMed  CAS  Google Scholar 

  69. Winblad B, Gauthier S, Scinto L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008;70(22):2024–35.

    Article  PubMed  CAS  Google Scholar 

  70. Feldman HH, Ferris S, Winblad B, et al. Effect of rivastigmine on delay to diagnosis of Alzheimer’s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 2007;6(6):501–12.

    Article  PubMed  CAS  Google Scholar 

  71. Newhouse P, Kellar K, Aisen P, et al. Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology. 2012;78(2):91–101. This study provides evidence that 6 months of transdermal nicotine (15 mg/day) improves cognitive test performance in nonsmoking patients with amnestic MCI.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. De Jager CA, Oulhaj A, Jacoby R, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatr. 2012;27(6):592–600.

    Article  Google Scholar 

  73. Van Uffelen JGZ, Chinapaw MJM, van Mechelen W, Hopman-Rock M. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br J Sports Med. 2008;42(5):344–51.

    Article  PubMed  Google Scholar 

  74. Sinn N, Milte CM, Street SJ, et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr. 2012;107(11):1682–93. This study showed that both DHA- and EPA-rich fish oil reduced depressive symptoms in patients with MCI after 6 months of treatment, suggesting that omega-3 fatty acids may be useful for improving mood symptoms in patients with MCI.

    Article  PubMed  CAS  Google Scholar 

  75. Chiu C-C, Su K-P, Cheng T-C, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1538–44.

    Article  PubMed  CAS  Google Scholar 

  76. Russ TC, Morling JR. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst Rev. 2012;9, CD009132.

    PubMed  Google Scholar 

  77. Tricco AC, Soobiah C, Berliner S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185(16):1393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cooper C, Li R, Lyketsos C, Livingston G. Treatment for mild cognitive impairment: systematic review. Br J Psychiatry. 2013;203(3):255–64. Systematic review for randomized placebo controlled treatments trials for MCI.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Whitehouse PJ, Martino AM, Antuono PG, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res. 1986;371(1):146–51.

    Article  PubMed  CAS  Google Scholar 

  80. Perry E. Cholinergic signaling in Alzheimer disease: therapeutic strategies. Alzheimer Dis Assoc Disord. 1995;9 Suppl 2:1–2.

    PubMed  Google Scholar 

  81. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000;61(1):75–111.

    Article  PubMed  CAS  Google Scholar 

  82. Newhouse PA, Sunderland T, Tariot PN, et al. Intravenous nicotine in Alzheimer’s disease: a pilot study. Psychopharmacol (Berl). 1988;95(2):171–5.

    Article  CAS  Google Scholar 

  83. Wilson AL, Langley LK, Monley J, et al. Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav. 1995;51(2–3):509–14.

    Article  PubMed  CAS  Google Scholar 

  84. Howe MN, Price IR. Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr. 2001;13(4):465–75.

    Article  PubMed  CAS  Google Scholar 

  85. Engeland C, Mahoney C, Mohr E, et al. Nicotine and sensory memory in Alzheimer’s disease: an event-related potential study. Brain Cogn. 2002;49(2):232–4.

    PubMed  CAS  Google Scholar 

  86. Dawkins L, Powell JH, West R, et al. A double-blind placebo-controlled experimental study of nicotine: II–Effects on response inhibition and executive functioning. Psychopharmacol (Berl). 2007;190(4):457–67.

    Article  CAS  Google Scholar 

  87. Mazza M, Pomponi M, Janiri L, et al. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):12–26.

    Article  PubMed  CAS  Google Scholar 

  88. Simon SS, Yokomizo JE, Bottino CMC. Cognitive intervention in amnestic Mild Cognitive Impairment: a systematic review. Neurosci Biobehav Rev. 2012;36(4):1163–78. Systematic review that highlights several studies that demonstrated beneficial effects of cognitive training in patients with MCI.

    Article  PubMed  Google Scholar 

  89. Gates NJ, Sachdev PS, Fiatarone Singh MA, Valenzuela M. Cognitive and memory training in adults at risk of dementia: a systematic review. BMC Geriatr. 2011;11:55.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Miller DI, Taler V, Davidson PSR, Messier C. Measuring the impact of exercise on cognitive aging: methodological issues. Neurobiol Aging. 2012;33(3):622.e29–43.

    Article  Google Scholar 

  91. McDonnell MN, Smith AE, Mackintosh SF. Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch Phys Med Rehabil. 2011;92(7):1044–52.

    Article  PubMed  Google Scholar 

  92. Brigidi B, Achenbach T, Dumenci L, Newhouse PA. Broad spectrum assessment of psychopathology and adaptive functioning with the Older Adult Behavior Checklist: A validation study. Int J Geriatr Psychiatr. 2010;25:1177–1185.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jennifer N. Vega declares that she has no conflict of interest.

Paul A. Newhouse has received grants from the National Institute on Aging and is a board member of the American Association for Geriatric Psychiatry.

Human and Animal Rights and Informed Consent

This article does not contain any new studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Newhouse.

Additional information

This article is part of the Topical Collection on Geriatric Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, J.N., Newhouse, P.A. Mild Cognitive Impairment: Diagnosis, Longitudinal Course, and Emerging Treatments. Curr Psychiatry Rep 16, 490 (2014). https://doi.org/10.1007/s11920-014-0490-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0490-8

Keywords

Navigation