Skip to main content

Advertisement

Log in

Neuropathic Pain: Central vs. Peripheral Mechanisms

  • Neuropathic Pain (E Eisenberg, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Our goal is to examine the processes—both central and peripheral—that underlie the development of peripherally-induced neuropathic pain (pNP) and to highlight recent evidence for mechanisms contributing to its maintenance. While many pNP conditions are initiated by damage to the peripheral nervous system (PNS), their persistence appears to rely on maladaptive processes within the central nervous system (CNS). The potential existence of an autonomous pain-generating mechanism in the CNS creates significant implications for the development of new neuropathic pain treatments; thus, work towards its resolution is crucial. Here, we seek to identify evidence for PNS and CNS independently generating neuropathic pain signals.

Recent Findings

Recent preclinical studies in pNP support and provide key details concerning the role of multiple mechanisms leading to fiber hyperexcitability and sustained electrical discharge to the CNS. In studies regarding central mechanisms, new preclinical evidence includes the mapping of novel inhibitory circuitry and identification of the molecular basis of microglia-neuron crosstalk. Recent clinical evidence demonstrates the essential role of peripheral mechanisms, mostly via studies that block the initially damaged peripheral circuitry. Clinical central mechanism studies use imaging to identify potentially self-sustaining infra-slow CNS oscillatory activity that may be unique to pNP patients.

Summary

While new preclinical evidence supports and expands upon the key role of central mechanisms in neuropathic pain, clinical evidence for an autonomous central mechanism remains relatively limited. Recent findings from both preclinical and clinical studies recapitulate the critical contribution of peripheral input to maintenance of neuropathic pain. Further clinical investigations on the possibility of standalone central contributions to pNP may be assisted by a reconsideration of the agreed terms or criteria for diagnosing the presence of central sensitization in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Jensen TS, et al. A new definition of neuropathic pain. Pain. 2011;152(10):2204–5. This paper describes the updated definition of neropathic pain and the rationale for the updated taxonomy

    Article  PubMed  Google Scholar 

  2. Sheet PNF. National Institute of Neurological Disorders and Stroke (NINDS). 2005.

  3. Finnerup NB, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353(9168):1959–64.

    Article  CAS  PubMed  Google Scholar 

  5. Bouhassira D, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36.

    Article  PubMed  Google Scholar 

  6. •• Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18(1):20–30. A key review article focusing on maladaptive structural plasticity in neural circuits of pain across animal models and human patients

    Article  PubMed  CAS  Google Scholar 

  7. White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(51):20151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rowbotham MC, et al. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis. 1996;3(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  9. • Ochoa JL, et al. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve. 2005;32(4):459–72. One of the early uses of microneurography to demonstrate spontaneous activity and hyperexcitability in C fibers in patients with painful neuropathy

    Article  PubMed  Google Scholar 

  10. Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32(12):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ratte S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy. Curr Opin Neurobiol. 2016;36:31–7.

    Article  CAS  PubMed  Google Scholar 

  12. •• Latremoliere A, Woolf CJ. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. A comprehensive review on mechanisms contributing to central sensitization

    Article  PubMed  PubMed Central  Google Scholar 

  13. Novakovic SD, et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci. 1998;18(6):2174–87.

    CAS  PubMed  Google Scholar 

  14. Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001;87(1):12–26.

    Article  CAS  PubMed  Google Scholar 

  15. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang LY, Gu Y, Chen Y. Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia. 2013;61(10):1571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. McLachlan EM, et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363(6429):543–6.

    Article  CAS  PubMed  Google Scholar 

  18. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355(6355):75–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett DL, et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J Neurosci. 2000;20(1):427–37.

    CAS  PubMed  Google Scholar 

  20. Liu X, Chung K, Chung JM. Ectopic discharges and adrenergic sensitivity of sensory neurons after spinal nerve injury. Brain Res. 1999;849(1–2):244–7.

    Article  CAS  PubMed  Google Scholar 

  21. Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain. 2007;131(3):243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carter GT, et al. Neuropathic pain in Charcot-Marie-Tooth disease. Arch Phys Med Rehabil. 1998;79(12):1560–4.

    Article  CAS  PubMed  Google Scholar 

  23. Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707–58.

    Article  PubMed  CAS  Google Scholar 

  24. Study RE, Kral MG. Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain. 1996;65(2–3):235–42.

    Article  CAS  PubMed  Google Scholar 

  25. • Gracely RH, Lynch SA, Bennett GJ. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain. 1992;51(2):175–94. A classic read. One of the first clinical reports demonstrating the the blockade of afferent input, even in patients with profound signs of central sensitization, temporarily abolishes neuropathic pain

    Article  CAS  PubMed  Google Scholar 

  26. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.

    Article  CAS  PubMed  Google Scholar 

  27. Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473–7.

    Article  PubMed  Google Scholar 

  28. Fields HL, Rowbotham M, Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis. 1998;5(4):209–27.

    Article  CAS  PubMed  Google Scholar 

  29. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154(Suppl 1):S10–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sugimoto T, Bennett GJ, Kajander KC. Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain. 1990;42(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  31. Flor H, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.

    Article  CAS  PubMed  Google Scholar 

  32. Apkarian AV, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5.

    Article  CAS  PubMed  Google Scholar 

  33. Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochim Biophys Acta. 2010;1802(10):924–33.

    Article  CAS  PubMed  Google Scholar 

  34. Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–28.

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Wood JN. The roles of sodium channels in nociception: implications for mechanisms of neuropathic pain. Pain Med. 2011;12(Suppl 3):S93–9.

    Article  PubMed  Google Scholar 

  36. Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1 Suppl 1):S3–S12.

    Article  CAS  PubMed  Google Scholar 

  37. Eijkelkamp N, et al. Neurological perspectives on voltage-gated sodium channels. Brain. 2012;135(Pt 9):2585–612.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118.

    Article  PubMed  Google Scholar 

  39. Alessandri-Haber N, et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24(18):4444–52.

    Article  CAS  PubMed  Google Scholar 

  40. Mickle, A.D., A.J. Shepherd, and D.P. Mohapatra. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel). 2016; 9(4).

  41. Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 2014;37(3):146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16(11):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dray A. Neuropathic pain: emerging treatments. Br J Anaesth. 2008;101(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  44. Nystrom B, Hagbarth KE. Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett. 1981;27(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  45. Dib-Hajj SD, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain. 2005;128(Pt 8):1847–54.

    Article  CAS  PubMed  Google Scholar 

  46. Khaliq W, Alam S, Puri N. Topical lidocaine for the treatment of postherpetic neuralgia. Cochrane Database Syst Rev. 2007;2:CD004846.

    Google Scholar 

  47. Galer BS, et al. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain. 1999;80(3):533–8.

    Article  CAS  PubMed  Google Scholar 

  48. • Haroutounian S, et al. Primary afferent input critical for maintaining spontaneous pain in peripheral neuropathy. Pain. 2014;155(7):1272–9. A systematic assessment of the effect of afferent input blockade (with a local anesthetic) in two populations of peripheral neuropathic pain patients

    Article  PubMed  Google Scholar 

  49. Finnerup NB, et al. The sodium-channel blocker lidocaine in subanesthetic concentrations reduces spontaneous and evoked pain in human painful neuroma. Scandanavian Journal of Pain. 2015;8:45–6.

    Article  Google Scholar 

  50. Miclescu A, et al. Differential analgesic effects of subanesthetic concentrations of lidocaine on spontaneous and evoked pain in human painful neuroma: A randomized, double blind study. Scandanavian Journal of Pain. 2015;8:37–44.

    Article  Google Scholar 

  51. Wijayasinghe N, et al. Ultrasound guided Intercostobrachial nerve blockade in patients with persistent pain after breast cancer surgery: a pilot study. Pain Physician. 2016;19(2):E309–18.

    PubMed  Google Scholar 

  52. Wijayasinghe N, et al. The role of peripheral afferents in persistent inguinal postherniorrhaphy pain: a randomized, double-blind, placebo-controlled, crossover trial of ultrasound-guided tender point blockade. Br J Anaesth. 2016;116(6):829–37.

    Article  CAS  PubMed  Google Scholar 

  53. Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics. 2008;5(1):100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wall PD, Sweet WH. Temporary abolition of pain in man. Science. 1967;155(3758):108–9.

    Article  CAS  PubMed  Google Scholar 

  55. Waisbrod H, et al. Direct nerve stimulation for painful peripheral neuropathies. J Bone Joint Surg Br. 1985;67(3):470–2.

    CAS  PubMed  Google Scholar 

  56. Eisenberg E, Waisbrod H, Gerbershagen HU. Long-term peripheral nerve stimulation for painful nerve injuries. Clin J Pain. 2004;20(3):143–6.

    Article  PubMed  Google Scholar 

  57. Yakovlev AE, Peterson AT. Peripheral nerve stimulation in treatment of intractable postherpetic neuralgia. Neuromodulation. 2007;10(4):373–5.

    Article  PubMed  Google Scholar 

  58. • Vaso A, et al. Peripheral nervous system origin of phantom limb pain. Pain. 2014;155(7):1384–91. Clinical demonstration of phantom pain alleviation by DRG blockade with local anesthetics, even in dilute concentrations. An important paper on the role of the dorsal root ganglion as a generator of post-amputation phantom and stump pain

    Article  PubMed  Google Scholar 

  59. Liem L, et al. One-year outcomes of spinal cord stimulation of the dorsal root ganglion in the treatment of chronic neuropathic pain. Neuromodulation. 2015;18(1):41–8. discussion 48-9

    Article  PubMed  Google Scholar 

  60. Eldabe S, et al. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation. 2015;18(7):610–6. discussion 616-7

    Article  PubMed  Google Scholar 

  61. Liem L, et al. The dorsal root ganglion as a therapeutic target for chronic pain. Reg Anesth Pain Med. 2016;41(4):511–9.

    Article  PubMed  Google Scholar 

  62. Choi SR, et al. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain, 2016.

  63. Hildebrand ME, et al. Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep. 2016;17(10):2753–65.

    Article  CAS  PubMed  Google Scholar 

  64. Kiyoyuki Y, et al. Leukotriene enhances NMDA-induced inward currents in dorsal horn neurons of the rat spinal cord after peripheral nerve injury. Mol Pain. 2015;11:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Peirs C, et al. Dorsal horn circuits for persistent mechanical pain. Neuron. 2015;87(4):797–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang HS, et al. Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury. Neurochem Int. 2016;99:9–15.

    Article  CAS  PubMed  Google Scholar 

  67. Yamamoto K, et al. Oxaliplatin administration increases expression of the voltage-dependent calcium channel alpha2delta-1 subunit in the rat spinal cord. J Pharmacol Sci. 2016;130(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  68. Guo W, et al. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain. 2014;10:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhou LJ, et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun. 2011;25(2):322–34.

    Article  CAS  PubMed  Google Scholar 

  70. Chen JT, et al. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction. Nat Commun. 2014;5:5331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferrini F, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16(2):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Keller AF, et al. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain. 2007;3:27. An elegant demonstration of spontaneous activity of dorsal horn neurons (projecting to the parabrachial nucleus) in rodents with peripheral nerve injury and the role of microglia in spinal cord sensitization

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Coull JA, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21.

    Article  CAS  PubMed  Google Scholar 

  74. Imlach WL, et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci Rep. 2016;6:37104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lyu C, et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. Mol Pain. 2015;11:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xu T, et al. Epigenetic upregulation of CXCL12 expression mediates anti-tubulin chemotherapeutics-induced neuropathic pain. Pain, 2017.

  77. Xie F, et al. Early repeated administration of CXCR4 antagonist AMD3100 dose-dependently improves neuropathic pain in rats after L5 spinal nerve ligation. Neurochem Res. 2016;41(9):2289–99.

    Article  CAS  PubMed  Google Scholar 

  78. Luo X, et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain. 2016;12

  79. Jiang BC, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest. 2016;126(2):745–61.

    Article  PubMed  PubMed Central  Google Scholar 

  80. • Sun S, et al. Role of interleukin-4, the chemokine CCL3 and its receptor CCR5 in neuropathic pain. Mol Immunol. 2016;77:184–92. This paper illustrates a neuronal/astrocytic interaction in the spinal cord following peripheral nerve injury wherein neuron-derived CXCL13 acts on astrocytes via CXCR5 to facilitate neuropathic pain

    Article  CAS  PubMed  Google Scholar 

  81. Kwiatkowski K, et al. Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:68–78.

    Article  CAS  Google Scholar 

  82. Piotrowska A, et al. Maraviroc reduces neuropathic pain through polarization of microglia and astroglia—evidence from in vivo and in vitro studies. Neuropharmacology. 2016;108:207–19.

    Article  CAS  PubMed  Google Scholar 

  83. Nazemi S, et al. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol. 2015;42(7):772–9.

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto Y, et al. Activated microglia contribute to convergent nociceptive inputs to spinal dorsal horn neurons and the development of neuropathic pain. Neurochem Res. 2015;40(5):1000–12.

    Article  CAS  PubMed  Google Scholar 

  85. Terayama R, et al. Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve. Exp Brain Res. 2015;233(4):1201–12.

    Article  CAS  PubMed  Google Scholar 

  86. Obata H, et al. Activation of astrocytes in the spinal cord contributes to the development of bilateral allodynia after peripheral nerve injury in rats. Brain Res. 2010;1363:72–80.

    Article  CAS  PubMed  Google Scholar 

  87. Sun C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15(1):89–96.

    PubMed  Google Scholar 

  88. Yao CY, et al. Interleukin-17A acts to maintain neuropathic pain through activation of CaMKII/CREB signaling in spinal neurons. Mol Neurobiol. 2016;53(6):3914–26.

    Article  CAS  PubMed  Google Scholar 

  89. Choi BM, et al. The time-course and RNA interference of TNF-alpha, IL-6, and IL-1beta expression on neuropathic pain induced by L5 spinal nerve transection in rats. Korean J Anesthesiol. 2015;68(2):159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Masuda, T., et al., Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. 2016. 7: p. 12529.

  91. McGaraughty S, et al. P2X7-related modulation of pathological nociception in rats. Neuroscience. 2007;146(4):1817–28.

    Article  CAS  PubMed  Google Scholar 

  92. Koyanagi S, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cirillo G, et al. Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol Neurobiol. 2015;52(3):1440–57.

    Article  CAS  PubMed  Google Scholar 

  94. • Okubo M, et al. Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS One. 2016;11(4):e0153375. This study demonstrates that enhanced expression of M-CSF in spinal microglia and sensory afferents following nerve injury is sufficient to induce microgliosis and mechanical allodynia

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. • Gu N, et al. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep. 2016;16(3):605–14. The authors use transgenic reporter mice in a spinal nerve transection model to show that injury-induced microgliosis in the spine results exclusively from local microglial proliferation, rather than infiltrating monocytes

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng J, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun. 2016;7:12029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Patel R, Dickenson AH. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J Neurophysiol. 2016;116(1):159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  98. • Wang ZT, et al. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res. 2015;1624:515–24. An increase in evoked responses to mechanical and cooling stimuli in ventral posterior thalamic neurons was reported in a rat spinal nerve ligation model, along with an increase in the rate of spontaneous firing, a modification proposed to contribute to ongoing pain

    Article  CAS  PubMed  Google Scholar 

  99. Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ. 2015;3:e1350.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Masocha W. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice. PeerJ. 2016;4:e2702.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shen FY, et al. Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex. Mol Pain. 2015;11:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Taylor AM, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res, 2016.

  103. Ni HD, et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res. 2016;94(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Y., et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2016.

  105. • Kim SK, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126(5):1983–97. Following sciatic nerve ligation, the authors detect a re-emergence of ‘immature’ mGluR5 signaling in astrocytes in the somatosensory cortex, a change thought to contribute to changes in synaptic plasticity and mechanical allodynia

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sorkin LS, McAdoo DJ, Willis WD. Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res. 1992;581(2):307–10.

    Article  CAS  PubMed  Google Scholar 

  107. Avila-Rojas SH, et al. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Res. 2015;1622:377–85.

    Article  CAS  PubMed  Google Scholar 

  108. Sagalajev, B., et al., Descending antinociception induced by secondary somatosensory cortex stimulation in experimental neuropathy: role of the medullospinal serotonergic pathway. J Neurophysiol. 2017; p. jn.00836.2016.

  109. De Felice M, et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152(12):2701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Viisanen H, Pertovaara A. Antinociception by motor cortex stimulation in the neuropathic rat: does the locus coeruleus play a role? Exp Brain Res. 2010;201(2):283–96.

    Article  CAS  PubMed  Google Scholar 

  111. Wei H, et al. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity. Pharmacol Res. 2014;90:58–66.

    Article  CAS  PubMed  Google Scholar 

  112. Kimura M, et al. Impaired pain-evoked analgesia after nerve injury in rats reflects altered glutamate regulation in the locus coeruleus. Anesthesiology. 2015;123(4):899–908.

    Article  CAS  PubMed  Google Scholar 

  113. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    Article  PubMed  Google Scholar 

  114. Tuveson B, Leffler AS, Hansson P. Heterotopic noxious conditioning stimulation (HNCS) reduced the intensity of spontaneous pain, but not of allodynia in painful peripheral neuropathy. Eur J Pain. 2007;11(4):452–62.

    Article  PubMed  Google Scholar 

  115. Moisset X, Bouhassira D. Brain imaging of neuropathic pain. NeuroImage. 2007;37(Suppl 1):S80–8.

    Article  PubMed  Google Scholar 

  116. Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66(3):375–90.

    Article  CAS  PubMed  Google Scholar 

  117. Geha PY, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;128(1–2):88–100.

    Article  CAS  PubMed  Google Scholar 

  118. Casseb RF, et al. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy. Neuroradiology. 2016;58(11):1103–8.

    Article  PubMed  Google Scholar 

  119. Casey KL, Lorenz J, Minoshima S. Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol. 2003;184(Suppl 1):S80–8.

    Article  PubMed  Google Scholar 

  120. Karl A, et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21(10):3609–18.

    CAS  PubMed  Google Scholar 

  121. Simons LE, et al. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155(9):1727–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Apkarian AV, et al. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett. 2001;311(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  123. Zambreanu L, et al. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain. 2005;114(3):397–407.

    Article  CAS  PubMed  Google Scholar 

  124. Alexander GM, et al. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain. 2005;116(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kotani N, et al. Cerebrospinal fluid interleukin 8 concentrations and the subsequent development of postherpetic neuralgia. Am J Med. 2004;116(5):318–24.

    Article  CAS  PubMed  Google Scholar 

  126. Backonja MM, et al. Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. J Neuroimmunol. 2008;195(1–2):157–63.

    Article  CAS  PubMed  Google Scholar 

  127. Alshelh Z, et al. Chronic neuropathic pain: it’s about the rhythm. J Neurosci. 2016;36(3):1008–18.

    Article  CAS  PubMed  Google Scholar 

  128. Neblett R, et al. The central sensitization inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J Pain. 2013;14(5):438–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Haroutounian.

Ethics declarations

Conflict of Interest

Kathleen Meacham declares training grant funding that provides part of her salary and involves research on painful neuropathies, but is otherwise unrelated to this manuscript, from the NIH - NIDDK T32 DK108742 01 IMAGING, MODELING AND ENGINEERING OF DIABETIC TISSUES.

Andrew Shepherd declares employment with and travel and accommodation expenses covered by Washington University School of Medicine.

Durga P. Mohapatra declares grant funding to conduct basic research in pain neurobiology from the National Institutes of Health (NIH), USA. Research grant no. NS069898.

Simon Haroutounian declares the ASPIRE neuropathic pain grant funding to his institution from Pfizer Inc. and travel reimbursement for NeuPSIG committee meeting from IASP.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuropathic Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meacham, K., Shepherd, A., Mohapatra, D.P. et al. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr Pain Headache Rep 21, 28 (2017). https://doi.org/10.1007/s11916-017-0629-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-017-0629-5

Keywords

Navigation