Skip to main content

Advertisement

Log in

Bone Response of Loaded Periodontal Ligament

  • Craniofacial Skeleton (G Roberts, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The tooth-periodontal ligament-alveolar bone complex acts symbiotically to dissipate the mechanical loads incurred during mastication and/or orthodontic tooth movement. The periodontal ligament functions both in the tension and compression. At the molecular and celleular levels, the loads in the periodontal ligament trigger mechanobiological events in the alveolar bone, which leads to bone modeling and remodeling. The current review focuses on the bone response to mechanical loading of the periodontal ligament on the tension and pressure sides. Understanding the bone response has major implications for dentistry, including a better understanding of the different types of orthodontic tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod. 1960;46(12):881–900.

    Article  Google Scholar 

  2. Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 1967;53(10):721–45.

    Article  CAS  PubMed  Google Scholar 

  3. Von Bohl M, Maltha J, Von den Hoff H, Kuijpers-Jagtman AM. Changes in the periodontal ligament after experimental tooth movement using high and low continuous forces in beagle dogs. Angle Orthod. 2004;74(1):16–25.

    Google Scholar 

  4. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod. 2006;28(3):221–40.

    Article  PubMed  Google Scholar 

  5. King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991;12(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  6. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 1995;108(4):380–8.

    Article  CAS  Google Scholar 

  7. Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129(4):458–68.

    Article  PubMed  Google Scholar 

  8. Shetty N, Patil AK, Ganeshkar SV, Hegde S. Comparison of the effects of ibuprofen and acetaminophen on PGE2 levels in the GCF during orthodontic tooth movement: a human study. Prog Orthod. 2013;14:6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yamasaki K, Miura F, Suda T. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. J Dent Res. 1980;59(10):1635–42.

    Article  CAS  PubMed  Google Scholar 

  10. Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci. 2008;116(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  11. Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Prog Orthod. 2014;15:65.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grieve 3rd WG, Johnson GK, Moore RN, Reinhardt RA, DuBois LM. Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1994;105(4):369–74.

    Article  Google Scholar 

  13. Kaku M, Motokawa M, Tohma Y, Tsuka N, Koseki H, Sunagawa H, et al. VEGF and M-CSF levels in periodontal tissue during tooth movement. Biomed Res (Tokyo, Japan). 2008;29(4):181–7.

    Article  CAS  Google Scholar 

  14. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  15. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res. 2009;12(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  17. Brooks PJ, Heckler AF, Wei K, Gong SG. M-CSF accelerates orthodontic tooth movement by targeting preosteoclasts in mice. Angle Orthod. 2011;81(2):277–83.

    Article  PubMed  Google Scholar 

  18. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res. 1996;75(1):562–7.

    Article  CAS  PubMed  Google Scholar 

  20. van Gastel J, Teughels W, Quirynen M, Struyf S, Van Damme J, Coucke W, et al. Longitudinal changes in gingival crevicular fluid after placement of fixed orthodontic appliances. Am J Orthod Dentofac Orthop. 2011;139(6):735–44.

    Article  Google Scholar 

  21. Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem. 2016;117(2):382–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wintges K, Beil FT, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28(10):2070–80.

    Article  CAS  PubMed  Google Scholar 

  23. Yu X, Huang Y, Collin-Osdoby P, Osdoby P. CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(12):2065–77.

    Article  CAS  Google Scholar 

  24. Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 2002;87(4):386–93.

    Article  CAS  PubMed  Google Scholar 

  25. Taddei SR, Andrade Jr I, Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2012;141(2):153–60.

    Article  Google Scholar 

  26. Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89(10):1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andrade Jr I, Taddei SR, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009;88(11):1037–41.

    Article  CAS  PubMed  Google Scholar 

  28. Bien SM. Fluid dynamic mechanisms which regulate tooth movement. Adv Oral Biol. 1966;2:173–201.

    Article  CAS  PubMed  Google Scholar 

  29. Bergomi M, Wiskott HW, Botsis J, Mellal A, Belser UC. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure. J Biomech Eng. 2010;132(1):014504.

    PubMed  Google Scholar 

  30. Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 2000;159(1–2):7–13.

    Article  CAS  PubMed  Google Scholar 

  31. Bonewald LF. The amazing osteocyte. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(2):229–38. This review article focusses on the role of osteocytes on mechanotransduction and activation of osteoclasts.

    Article  CAS  Google Scholar 

  32. Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A. The Role of Osteocytes in Bone Resorption during Orthodontic Tooth Movement. J Dent Res. 2013;92(4):340–5. The authors showed that the ablation of osteocytes using diptherial toxin in transgenic mice leads to decreased orthodontic tooth movement. The decreased alveolar bone resorption demonstrate the role of osteocytes in the activation of osteoclasts.

    Article  CAS  PubMed  Google Scholar 

  33. Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112(9):2412–23.

    Article  CAS  PubMed  Google Scholar 

  35. Moin S, Kalajzic Z, Utreja A, Nihara J, Wadhwa S, Uribe F, et al. Osteocyte death during orthodontic tooth movement in mice. Angle Orthod. 2014;84(6):1086–92.

    Article  PubMed  Google Scholar 

  36. Nguyen AM, Jacobs CR. Emerging role of primary cilia as mechanosensors in osteocytes. Bone. 2013;54(2):196–204.

    Article  CAS  PubMed  Google Scholar 

  37. Shalish M, Will LA, Fukai N, Hou B, Olsen BR. Role of polycystin-1 in bone remodeling: orthodontic tooth movement study in mutant mice. Angle Orthod. 2014;84(5):885–90.

    Article  PubMed  Google Scholar 

  38. Miyagawa A, Chiba M, Hayashi H, Igarashi K. Compressive force induces VEGF production in periodontal tissues. J Dent Res. 2009;88(8):752–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cardaropoli D, Gaveglio L. The Influence of Orthodontic Movement on Periodontal Tissues Level. Semin Orthod. 2007;13(4):234–45.

    Article  Google Scholar 

  40. Norevall LI, Forsgren S, Matsson L. Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod. 1995;17(4):311–25.

    Article  CAS  PubMed  Google Scholar 

  41. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355–62.

    Article  CAS  PubMed  Google Scholar 

  42. Andrade Jr I, Taddei SRA, Souza PEA. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Semin Orthod. 2012;18(4):257–69.

    Article  Google Scholar 

  43. Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res. 2001;42(2):135–48.

    Article  CAS  PubMed  Google Scholar 

  44. Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 2001;12(5):414–24.

    Article  CAS  PubMed  Google Scholar 

  45. Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, et al. Mechanical Loading Stimulates Dentin Matrix Protein 1 (DMP1) Expression in Osteocytes In Vivo. J Bone Miner Res. 2003;18(5):807–17.

    Article  CAS  PubMed  Google Scholar 

  46. Gluhak-Heinrich J, Pavlin D, Yang W, MacDougall M, Harris SE. MEPE expression in osteocytes during orthodontic tooth movement. Arch Oral Biol. 2007;52(7):684–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone. 1999;24(4):371–9.

    Article  CAS  PubMed  Google Scholar 

  48. Deguchi T, Takano-Yamamoto T, Yabuuchi T, Ando R, Roberts WE, Garetto LP. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am J Orthod Dentofac Orthop. 2008;133(6):889–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Yadav.

Ethics declarations

Conflict of Interest

Sumit Yadav, Ravindra Nanda, and Eliane Dutra declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Craniofacial Skeleton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, E.H., Nanda, R. & Yadav, S. Bone Response of Loaded Periodontal Ligament. Curr Osteoporos Rep 14, 280–283 (2016). https://doi.org/10.1007/s11914-016-0328-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0328-x

Keywords

Navigation